44 research outputs found
Vascular Ī²-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAĪ² mice
Cerebrovascular lesions related to congophilic amyloid angiopathy (CAA) often accompany deposition of Ī²-amyloid (AĪ²) in Alzheimerās disease (AD), leading to disturbed cerebral blood flow and cognitive dysfunction, posing the question how cerebrovascular pathology contributes to the pathology of AD. To address this question, we characterised the morphology, biochemistry and functionality of brain blood vessels in transgenic arctic Ī²-amyloid (arcAĪ²) mice expressing human amyloid precursor protein (APP) with both the familial AD-causing Swedish and Arctic mutations; these mice are characterised by strong CAA pathology. Mice were analysed at early, mid and late-stage pathology. Expression of the glucose transporter GLUT1 at the bloodābrain barrier (BBB) was significantly decreased and paralleled by impaired in vivo blood-to-brain glucose transport and reduced cerebral lactate release during neuronal activation from mid-stage pathology onwards. Reductions in astrocytic GLUT1 and lactate transporters, as well as retraction of astrocyte endfeet and swelling consistent with neurovascular uncoupling, preceded wide-spread Ī²-amyloid plaque pathology. We show that CAA at later disease stages is accompanied by severe morphological alterations of brain blood vessels including stenoses, BBB leakages and the loss of vascular smooth muscle cells (SMCs). Together, our data establish that cerebrovascular and astrocytic pathology are paralleled by impaired cerebral metabolism in arcAĪ² mice, and that astrocyte alterations occur already at premature stages of pathology, suggesting that astrocyte dysfunction can contribute to early behavioural and cognitive impairments seen in these mice
The organization of the lamina ganglionaris of the hemipteran insects, Notonecta glauca, Corixa punctata and Gerris lacustris
Neuronal elements, i.e. first and second order neurons, of the first optic ganglion of three waterbugs, N. glauca, C. punctata and G. lacustris, are analyzed on the basis of light- and electron microscopy. Eight retinula cell axons, leaving each ommatidium, disperse to different cartridges as they enter the laminar outer plexiform layer. Such a pattern of divergence is one of the conditions for neuronal superposition; it is observed for all three species of waterbugs. The manner in which the receptors of a single bundle of ommatidia split of within the lamina, whereby information from receptors up to three or five horizontal rows away can converge upon the same cartridge, differs among the species. Six of the eight axons of retinula cells R1--6, the short visual fibers end at different levels within the bilayered lamina, whereas the central pair of retinula cells R7/8, the long visual fibers, run directly through the lamina to a corresponding unit of the medulla. Four types of monopolar cells L1-L4 are classified; their branching patterns seem to be correlated to the splitting and termination of retinula cell axons. The topographical relationship and synaptic organization between retinula cell terminals and monopolar cells in the two laminar layers are identified by examination of serial ultrathin sections of single Golgi-stained neurons. An attempt is made to correlate some anatomical findings, especially the neuronal superposition, to results from physiological investigations on the hemipteran retina
The superposition eye of Cloeon dipterum: the organization of the lamina ganglionaris
The lamina ganglionaris of the superposition eye of Cloeon dipterum is composed of separate optic cartridges arranged in a hexagonal pattern. Each optic cartridge consists of one central, radially branched monopolar cell (Li) surrounded by a crown of seven retinula cell terminals and two more unilaterally branched monopolar cells (La1/La2) situated close together outside the cartridge. Projections to neighbouring cartridges have not been observed. In most cases, synaptic contacts could be seen between a presynaptic retinula cell and more than two other postsynaptic profiles, which belong to monopolar cells or sometimes to glial cells. Seven retinula cell fibers of one ommatidium pass in a bundle through the basement membrane, run into their respective cartridges without changing orientation and terminate at approximately equal levels in the lamina. Long visual fibers with endings in the medulla are not visible in the superposition eye lamina, but are present in the lateral apposition eye. The relationship between the behaviour of the animal, optic mechanisms of the superposition eye and the structure of the lamina is discussed
The superposition eye of Cloeon dipterum: the organization of the lamina ganglionaris
The lamina ganglionaris of the superposition eye of Cloeon dipterum is composed of separate optic cartridges arranged in a hexagonal pattern. Each optic cartridge consists of one central, radially branched monopolar cell (Li) surrounded by a crown of seven retinula cell terminals and two more unilaterally branched monopolar cells (La1/La2) situated close together outside the cartridge. Projections to neighbouring cartridges have not been observed. In most cases, synaptic contacts could be seen between a presynaptic retinula cell and more than two other postsynaptic profiles, which belong to monopolar cells or sometimes to glial cells. Seven retinula cell fibers of one ommatidium pass in a bundle through the basement membrane, run into their respective cartridges without changing orientation and terminate at approximately equal levels in the lamina. Long visual fibers with endings in the medulla are not visible in the superposition eye lamina, but are present in the lateral apposition eye. The relationship between the behaviour of the animal, optic mechanisms of the superposition eye and the structure of the lamina is discussed
The synaptic organization of visual interneurons in the lobula complex of flies: A light and electron microscopical study using silver-intensified cobalt-impregnations
The synaptic organization of three classes of cobalt-filled and silver-intensified visual interneurons in the lobula complex of the blowfly Calliphora (Col A cells, horizontal cells and vertical cells) was studied electron microscopically. The Col A cells are regularly spaced, columnar, small field neurons of the lobula, which constitute a plexus of arborizations at the posterior surface of the neuropil and the axons of which terminate in the ventrolateral protocerebrum. They show postsynaptic specializations in the distal layer of their lobula-arborizations and additional presynaptic sites in a more proximal layer; their axon terminals are presynaptic to large descending neurons projecting into the thoracic ganglion. The horizontal and vertical cells are giant tangential neurons, the arborizations of which cover the anterior and posterior surface of the lobula plate, respectively, and which terminate in the perioesophageal region of the protocerebrum. Both classes of these giant neurons were found to be postsynaptic in the lobula plate and pre- and postsynaptic at their axon terminals and axon collaterals. The significance of these findings with respect to the functional properties of the neurons investigated is discussed