42,263 research outputs found

    Spin-Peierls transition in the Heisenberg chain with finite-frequency phonons

    Full text link
    We study the spin-Peierls transition in a Heisenberg spin chain coupled to optical bond phonons. Quantum Monte Carlo results for systems with up to N=256 spins show unambiguously that the transition occurs only when the spin-phonon coupling α exceeds a critical value α_c. Using sum rules, we show that the phonon spectral function has divergent (for N→∞) weight extending to zero frequency for α<α_c. The phonon correlations decay with distance r as 1/r. This behavior is characteristic for all 0<α<α_c and the q=π phonon does not soften (to zero frequency) at α=α_c.First author draf

    Method and system for respiration analysis Patent

    Get PDF
    Respiration analyzing method and apparatus for determining subjects oxygen consumption in aerospace environment

    A study of the applicability of nucleation theory to quasi-thermodynamic transitions of second and higher Ehrenfest-order

    Get PDF
    The applicability of classical nucleation theory to second (and higher) order thermodynamic transitions in the Ehrenfest sense has been investigated and expressions have been derived upon which the qualitative and quantitative success of the basic approach must ultimately depend. The expressions describe the effect of temperature undercooling, hydrostatic pressure, and tensile stress upon the critical parameters, the critical nucleus size, and critical free energy barrier, for nucleation in a thermodynamic transition of any general order. These expressions are then specialized for the case of first and second order transitions. The expressions for the case of undercooling are then used in conjunction with literature data to estimate values for the critical quantities in a system undergoing a pseudo-second order transition (the glass transition in polystyrene). Methods of estimating the interfacial energy gamma in systems undergoing a first and second order transition are also discussed

    Magnetic Excitations of Stripes Near a Quantum Critical Point

    Get PDF
    We calculate the dynamical spin structure factor of spin waves for weakly coupled stripes. At low energy, the spin wave cone intensity is strongly peaked on the inner branches. As energy is increased, there is a saddlepoint followed by a square-shaped continuum rotated 45 degree from the low energy peaks. This is reminiscent of recent high energy neutron scattering data on the cuprates. The similarity at high energy between this semiclassical treatment and quantum fluctuations in spin ladders may be attributed to the proximity of a quantum critical point with a small critical exponent η\eta.Comment: 4+ pages, 5 figures, published versio

    Magnetic Excitations of Stripes and Checkerboards in the Cuprates

    Get PDF
    We discuss the magnetic excitations of well-ordered stripe and checkerboard phases, including the high energy magnetic excitations of recent interest and possible connections to the "resonance peak" in cuprate superconductors. Using a suitably parametrized Heisenberg model and spin wave theory, we study a variety of magnetically ordered configurations, including vertical and diagonal site- and bond-centered stripes and simple checkerboards. We calculate the expected neutron scattering intensities as a function of energy and momentum. At zero frequency, the satellite peaks of even square-wave stripes are suppressed by as much as a factor of 34 below the intensity of the main incommensurate peaks. We further find that at low energy, spin wave cones may not always be resolvable experimentally. Rather, the intensity as a function of position around the cone depends strongly on the coupling across the stripe domain walls. At intermediate energy, we find a saddlepoint at (π,π)(\pi,\pi) for a range of couplings, and discuss its possible connection to the "resonance peak" observed in neutron scattering experiments on cuprate superconductors. At high energy, various structures are possible as a function of coupling strength and configuration, including a high energy square-shaped continuum originally attributed to the quantum excitations of spin ladders. On the other hand, we find that simple checkerboard patterns are inconsistent with experimental results from neutron scattering.Comment: 11 pages, 13 figures, for high-res figs, see http://physics.bu.edu/~yaodx/spinwave2/spinw2.htm

    Twin-spool turbopumps for ''low'' net positive suction pressure operations

    Get PDF
    Modified single-shaft turbopump incorporates inducer and main pump, each separately driven at different speeds through coaxial-shaft arrangement. Inducer operates at low speed for low net positive suction pressure, main pump operates at high speed to generate high pressure. This arrangement requires no external control for the inducer

    eHealth interventions for people with chronic kidney disease

    Get PDF
    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: This review aims to look at the benefits and harms of using eHealth interventions in the CKD population

    Comment on ``Ground State Phase Diagram of a Half-Filled One-Dimensional Extended Hubbard Model''

    Full text link
    In Phys. Rev. Lett. 89, 236401 (2002), Jeckelmann argued that the recently discovered bond-order-wave (BOW) phase of the 1D extended Hubbard model does not have a finite extent in the (U,V) plane, but exists only on a segment of a first-order SDW-CDW phase boundary. We here present quantum Monte Carlo result of higher precision and for larger system sizes than previously and reconfirm that the BOW phase does exist a finite distance away from the phase boundary, which hence is a BOW-CDW transition curve.Comment: 1 page, 1 figure, v2: final published versio
    corecore