1,957 research outputs found

    Symmetry-projected variational approach for ground and excited states of the two-dimensional Hubbard model

    Full text link
    We present a symmetry-projected configuration mixing scheme to describe ground and excited states, with well defined quantum numbers, of the two-dimensional Hubbard model with nearestneighbor hopping and periodic boundary conditions. Results for the half-filled 2{\times}4, 4{\times}4, and 6{\times}6 lattices, as well as doped 4 {\times} 4 systems, compare well with available results, both exact and from other state-of-the-art approximations. We report spectral functions and density of states obtained from a well-controlled ansatz for the (Ne {\pm} 1)-electron system. Symmetry projected methods have been widely used for the many-body nuclear physics problem but have received little attention in the solid state community. Given their relatively low (mean-field) computational cost and the high quality of results here reported, we believe that they deserve further scrutiny

    A proposal for a new type of thin-film field-emission display by edge breakdown of MIS structure

    Get PDF
    A new type of field emission display(FED) based on an edge-enhance electron emission from metal-insulator-semiconductor (MIS) thin film structure is proposed. The electrons produced by an avalanche breakdown in the semiconductor near the edge of a top metal electrode are initially injected to the thin film of an insulator with a negative electron affinity (NEA), and then are injected into vacuum in proximity to the top electrode edge. The condition for the deep-depletition breakdown near the edge of the top metal electrode is analytically found in terms of ratio of the insulator thickness to the maximum (breakdown) width of the semiconductor depletition region: this ratio should be less than 2/(3 \pi - 2) = 0.27. The influence of a neighboring metal electrode and an electrode thickness on this condition are analyzed. Different practical schemes of the proposed display with a special reference to M/CaF_2/Si structure are considered.Comment: 11 pages, 5 figure

    Versatile, Cheap, Readily Modifiable Sample Delivery Method for Analysis of Air-/Moisture-Sensitive Samples Using Atmospheric Pressure Solids Analysis Probe Mass Spectrometry

    Get PDF
    A cheap, versatile, readily modified, and reusable glass probe system enabling delivery of solid air-/moisture-sensitive samples for mass spectrometric (MS) analysis using an Atmospheric pressure Solids Analysis Probe (ASAP) is described. The simplicity of the design allows quick and easy ASAP MS analyses of sensitive solid and liquid samples without the need for any modifications to commercially available vertically loaded ASAP mass spectrometers. A comparison of ASAP mass spectra obtained for metal complexes under air and an inert atmosphere is given

    The effect of social media communication on consumer perceptions of brands

    Get PDF
    Researchers and brand managers have limited understanding of the effects social media communication has on how consumers perceive brands. We investigated 504 Facebook users in order to observe the impact of firm-created and user-generated social media communication on brand equity, brand attitude and purchase intention by using a standardized online survey throughout Poland. To test the conceptual model, we analyzed 60 brands across three different industries: non-alcoholic beverages, clothing and mobile network operators. When analyzing the data, we applied the structural equation modeling technique to both investigate the interplay of firm-created and user-generated social media communication and examine industry-specific differences. The results of the empirical studies showed that user-generated social media communication had a positive influence on both brand equity and brand attitude, whereas firm-created social media communication affected only brand attitude. Both brand equity and brand attitude were shown to have a positive influence on purchase intention. In addition, we assessed measurement invariance using a multi-group structural modeling equation. The findings revealed that the proposed measurement model was invariant across the researched industries. However, structural path differences were detected across the models

    SO/Sp Monopoles and Branes with Orientifold 3 Plane

    Get PDF
    We study BPS monopoles in 4 dimensional N=4 SO(N) and Sp(N)Sp(N) super Yang-Mills theories realized as the low energy effective theory of NN (physical and its mirror) parallel D3 branes and an {\it Orientifold 3 plane} with D1 branes stretched between them in type IIB string theory. Monopoles on D3 branes give the natural understanding by embedding in SU(N) through the constraints on both the asymptotic Higgs field (corresponding to the horizontal positions of D3 branes) and the magnetic charges (corresponding to the number of D1 branes) imposed by the O3 plane. The compatibility conditions of Nahm data for monopoles for these groups can be interpreted very naturally through the D1 branes in the presence of O3 plane.Comment: 18 pages, Latex with RevTex, 1 table, 4 figures, v2: Clarified the introduction and improved on the supersymmetric theory on D1 branes in page 7 and 8 and this final version to appear in Phys.Rev.

    Work functions, ionization potentials, and in-between: Scaling relations based on the image charge model

    Full text link
    We revisit a model in which the ionization energy of a metal particle is associated with the work done by the image charge force in moving the electron from infinity to a small cut-off distance just outside the surface. We show that this model can be compactly, and productively, employed to study the size dependence of electron removal energies over the range encompassing bulk surfaces, finite clusters, and individual atoms. It accounts in a straightforward manner for the empirically known correlation between the atomic ionization potential (IP) and the metal work function (WF), IP/WF\sim2. We formulate simple expressions for the model parameters, requiring only a single property (the atomic polarizability or the nearest neighbor distance) as input. Without any additional adjustable parameters, the model yields both the IP and the WF within \sim10% for all metallic elements, as well as matches the size evolution of the ionization potentials of finite metal clusters for a large fraction of the experimental data. The parametrization takes advantage of a remarkably constant numerical correlation between the nearest-neighbor distance in a crystal, the cube root of the atomic polarizability, and the image force cutoff length. The paper also includes an analytical derivation of the relation of the outer radius of a cluster of close-packed spheres to its geometric structure.Comment: Original submission: 8 pages with 7 figures incorporated in the text. Revised submission (added one more paragraph about alloy work functions): 18 double spaced pages + 8 separate figures. Accepted for publication in PR

    BPS R-balls in N=4 SYM on R X S^3, Quantum Hall Analogy and AdS/CFT Holography

    Get PDF
    In this paper, we propose a new approach to study the BPS dynamics in N=4 supersymmetric U(N) Yang-Mills theory on R X S^3, in order to better understand the emergence of gravity in the gauge theory. Our approach is based on supersymmetric, space-filling Q-balls with R-charge, which we call R-balls. The usual collective coordinate method for non-topological scalar solitons is applied to quantize the half and quarter BPS R-balls. In each case, a different quantization method is also applied to confirm the results from the collective coordinate quantization. For finite N, the half BPS R-balls with a U(1) R-charge have a moduli space which, upon quantization, results in the states of a quantum Hall droplet with filling factor one. These states are known to correspond to the ``sources'' in the Lin-Lunin-Maldacena geometries in IIB supergravity. For large N, we find a new class of quarter BPS R-balls with a non-commutativity parameter. Quantization on the moduli space of such R-balls gives rise to a non-commutative Chern-Simons matrix mechanics, which is known to describe a fractional quantum Hall system. In view of AdS/CFT holography, this demonstrates a profound connection of emergent quantum gravity with non-commutative geometry, of which the quantum Hall effect is a special case.Comment: 42 pages, 2 figures; v3: a new paragraph on counting unbroken susy of NC R-balls and references adde

    Towards an Understanding of the Globular Cluster Over--abundance around the Central Giant Elliptical NGC 1399

    Get PDF
    We investigate the kinematics of a combined sample of 74 globular clusters around NGC 1399. Their high velocity dispersion, increasing with radius, supports their association with the gravitational potential of the galaxy cluster rather than with that of NGC 1399 itself. We find no evidence for rotation in the full sample, although some indication for rotation in the outer regions. The data do not allow us to detect differences between the kinematics of the blue and red sub-populations of globular clusters. A comparison between the globular cluster systems of NGC 1399 and those of NGC 1404 and NGC 1380 indicates that the globular clusters in all three galaxies are likely to have formed via similar mechanisms and at similar epochs. The only property which distinguishes the NGC 1399 globular cluster system from these others is that it is ten times more abundant. We summarize the evidence for associating these excess globulars with the galaxy cluster rather than with NGC 1399 itself, and suggest that the over-abundance can be explained by tidal stripping, at an early epoch, of neighboring galaxies and subsequent accumulation of globulars in the gravitational potential of the galaxy cluster.Comment: AJ accepted (March issue), 27 pages (6 figures included), AAS style, two columns. Also available at http://www.eso.org/~mkissle

    Fuzzy Sphere Dynamics and Non-Abelian DBI in Curved Backgrounds

    Full text link
    We consider the non-Abelian action for the dynamics of NDpN Dp'-branes in the background of MDpM Dp-branes, which parameterises a fuzzy sphere using the SU(2) algebra. We find that the curved background leads to collapsing solutions for the fuzzy sphere except when we have D0D0 branes in the D6D6 background, which is a realisation of the gravitational Myers effect. Furthermore we find the equations of motion in the Abelian and non-Abelian theories are identical in the large NN limit. By picking a specific ansatz we find that we can incorporate angular momentum into the action, although this imposes restriction upon the dimensionality of the background solutions. We also consider the case of non-Abelian non-BPS branes, and examine the resultant dynamics using world-volume symmetry transformations. We find that the fuzzy sphere always collapses but the solutions are sensitive to the combination of the two conserved charges and we can find expanding solutions with turning points. We go on to consider the coincident NSNS5-brane background, and again construct the non-Abelian theory for both BPS and non-BPS branes. In the latter case we must use symmetry arguments to find additional conserved charges on the world-volumes to solve the equations of motion. We find that in the Non-BPS case there is a turning solution for specific regions of the tachyon and radion fields. Finally we investigate the more general dynamics of fuzzy S2k\mathbb{S}^{2k} in the DpDp-brane background, and find collapsing solutions in all cases.Comment: 49 pages, 3 figures, Latex; Version to appear in JHE
    corecore