604 research outputs found
On the reaction of keto acids with amino acids
This article does not have an abstract
An Eight-Term Novel Four-Scroll Chaotic System with Cubic Nonlinearity and its Circuit Simulation
This research work proposes an eight-term novel four-scroll chaotic system with cubic nonlinearity and analyses its
fundamental properties such as dissipativity, equilibria, symmetry and invariance, Lyapunov exponents and KaplanYorke
dimension. The phase portraits of the novel chaotic system, which are obtained in this work by using MATLAB,
depict the four-scroll attractor of the system. For the parameter values and initial conditions chosen in this work, the
Lyapunov exponents of the novel four-scroll chaotic system are obtained as L1 = 0.75335, L2 = 0 and L3 = −22.43304.
Also, the Kaplan-Yorke dimension of the novel four-scroll chaotic system is obtained as DKY = 2.0336. Finally, an
electronic circuit realization of the novel four-scroll chaotic system is presented by using SPICE to confirm the
feasibility of the theoretical model
Tunka Advanced Instrument for cosmic rays and Gamma Astronomy
The paper is a script of a lecture given at the ISAPP-Baikal summer school in
2018. The lecture gives an overview of the Tunka Advanced Instrument for cosmic
rays and Gamma Astronomy (TAIGA) facility including historical introduction,
description of existing and future setups, and outreach and open data
activities.Comment: Lectures given at the ISAPP-Baikal Summer School 2018: Exploring the
Universe through multiple messengers, 12-21 July 2018, Bol'shie Koty, Russi
High-Performance Computing for SKA Transient Search: Use of FPGA based Accelerators -- a brief review
This paper presents the High-Performance computing efforts with FPGA for the
accelerated pulsar/transient search for the SKA. Case studies are presented
from within SKA and pathfinder telescopes highlighting future opportunities. It
reviews the scenario that has shifted from offline processing of the radio
telescope data to digitizing several hundreds/thousands of antenna outputs over
huge bandwidths, forming several 100s of beams, and processing the data in the
SKA real-time pulsar search pipelines. A brief account of the different
architectures of the accelerators, primarily the new generation Field
Programmable Gate Array-based accelerators, showing their critical roles to
achieve high-performance computing and in handling the enormous data volume
problems of the SKA is presented here. It also presents the power-performance
efficiency of this emerging technology and presents potential future scenarios.Comment: Accepted for JoAA, SKA Special issue on SKA (2022
Microfluidic affinity selection of active SARS-CoV-2 virus particles
We report a microfluidic assay to select active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral particles (VPs), which were defined as intact particles with an accessible angiotensin-converting enzyme 2 receptor binding domain (RBD) on the spike (S) protein, from clinical samples. Affinity selection of SARS-CoV-2 particles was carried out using injection molded microfluidic chips, which allow for high-scale production to accommodate large-scale screening. The microfluidic contained a surface-bound aptamer directed against the virus’s S protein RBD to affinity select SARS-CoV-2 VPs. Following selection (~94% recovery), the VPs were released from the chip’s surface using a blue light light-emitting diode (89% efficiency). Selected SARS-CoV-2 VP enumeration was carried out using reverse transcription quantitative polymerase chain reaction. The VP selection assay successfully identified healthy donors (clinical specificity = 100%) and 19 of 20 patients with coronavirus disease 2019 (COVID-19) (95% sensitivity). In 15 patients with COVID-19, the presence of active SARS-CoV-2 VPs was found. The chip can be reprogrammed for any VP or exosomes by simply changing the affinity agent
Prevalence of Cataract Surgery and Visual Outcomes in Indian Immigrants in Singapore: The Singapore Indian Eye Study
10.1371/journal.pone.0075584PLoS ONE810-POLN
TAIGA -- an advanced hybrid detector complex for astroparticle physics and high energy gamma-ray astronomy
The physical motivations, present status, main results in study of cosmic
rays and in the field of gamma-ray astronomy as well future plans of the
TAIGA-1 (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy)
project are presented. The TAIGA observatory addresses ground-based gamma-ray
astronomy and astroparticle physics at energies from a few TeV to several PeV,
as well as cosmic ray physics from 100 TeV to several EeV. The pilot TAIGA-1
complex is located in the Tunka valley, ~50 km west from the southern tip of
the lake Baikal.Comment: Submission to SciPost Phys. Proc., 10 pages, 2 figure
- …