297 research outputs found

    Eg versus x relation from photoluminescence and electron microprobe investigations in p-type Hg1−xCdxTe (0.35 =< x =< 0.7)

    Get PDF
    Combined photoluminescence (at 10 T 300 K) and electron microprobe investigations have been carried out with HgCdTe samples grown from the melt or from solution. By exciting the samples through metallic masks with 200 μm diameter holes fixed with respect to the sample care was taken to pick-up both characteristic X-ray radiation as well as the photoluminescence from the same sample area. The Eg versus x relation determined in this way at T = 30 K has been compared with data from the interband absorption edge by other authors

    Photoluminescence lineshape of ZnO

    Get PDF
    The merger of the absorption coefficient dispersion, retrieved from transmission by the modified Urbach rule introduced by Ullrich and Bouchenaki [Jpn. J. Appl. Phys. 30, L1285, 1991], with the extended Roosbroeck-Shockley relation reveals that the optical absorption in ZnO distinctively determines the photoluminescence lineshape. Additionally, the ab initio principles employed enable the accurate determination of the carrier lifetime without further specific probing techniques

    Vacancy defects in epitaxial thin film CuGaSe2 and CuInSe2

    Get PDF
    Epitaxial thin film CuGaSe2 and CuInSe2 samples grown on GaAs substrates with varying [Cu]/[Ga,In] ratios were studied using positron annihilation Doppler-broadening spectroscopy and were compared to bulk crystals. We find both Cu monovacancies and Cu-Se divacancies in CuInSe2, whereas, in CuGaSe2, the only observed vacancy defect is the Cu-Se divacancy.Peer reviewe

    Spectroscopic signatures of a bandwidth-controlled Mott transition at the surface of 1T-TaSe2_2

    Full text link
    High-resolution angle-resolved photoemission (ARPES) data show that a metal-insulator Mott transition occurs at the surface of the quasi-two dimensional compound TaSe2_2. The transition is driven by the narrowing of the Ta 5d5d band induced by a temperature-dependent modulation of the atomic positions. A dynamical mean-field theory calculation of the spectral function of the half-filled Hubbard model captures the main qualitative feature of the data, namely the rapid transfer of spectral weight from the observed quasiparticle peak at the Fermi surface to the Hubbard bands, as the correlation gap opens up.Comment: 4 pages, 4 figures; one modified figure, added referenc

    Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland

    Get PDF
    Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red clover (Trifolium pratense L.) and lucerne (Medicago sativa L.) were leaf-labelled with 15N enriched urea during one growing season. N transfer to grasses (Lolium perenne L. and xfestulolium), white clover, red clover, lucerne, birdsfoot trefoil (Lotus corniculatus L.), chicory (Cichorium intybus L.), plantain (Plantago lanceolata L.), salad burnet (Sanguisorba minor L.)and caraway (Carum carvi L.) was assessed. Neighbouring plants contained greater amounts of N derived from white clover (4.8 gm-2) compared with red clover (2.2 gm-2) and lucerne (1.1 gm-2). Grasses having fibrous roots received greater amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40 kg N ha-1 to neighbouring plants. Below-ground N transfer from legumes to neighbouring plants differed among nitrogen donors and nitrogen receivers and may depend on root characteristics and regrowth strategies of plant species in the multi-species grassland

    Wafer-Scale Epitaxial Modulation of Quantum Dot Density

    Get PDF
    Precise control of the properties of semiconductor quantum dots (QDs) is vital for creating novel devices for quantum photonics and advanced opto-electronics. Suitable low QD-density for single QD devices and experiments are challenging to control during epitaxy and are typically found only in limited regions of the wafer. Here, we demonstrate how conventional molecular beam epitaxy (MBE) can be used to modulate the density of optically active QDs in one- and two- dimensional patterns, while still retaining excellent quality. We find that material thickness gradients during layer-by-layer growth result in surface roughness modulations across the whole wafer. Growth on such templates strongly influences the QD nucleation probability. We obtain density modulations between 1 and 10 QDs/μm2{\mu}m^{2} and periods ranging from several millimeters down to at least a few hundred microns. This novel method is universal and expected to be applicable to a wide variety of different semiconductor material systems. We apply the method to enable growth of ultra-low noise QDs across an entire 3-inch semiconductor wafer

    Wafer-scale epitaxial modulation of quantum dot density

    Get PDF
    Precise control of the properties of semiconductor quantum dots (QDs) is vital for creating novel devices for quantum photonics and advanced opto-electronics. Suitable low QD-densities for single QD devices and experiments are challenging to control during epitaxy and are typically found only in limited regions of the wafer. Here, we demonstrate how conventional molecular beam epitaxy (MBE) can be used to modulate the density of optically active QDs in one- and two- dimensional patterns, while still retaining excellent quality. We find that material thickness gradients during layer-by-layer growth result in surface roughness modulations across the whole wafer. Growth on such templates strongly influences the QD nucleation probability. We obtain density modulations between 1 and 10 QDs/µm2 and periods ranging from several millimeters down to at least a few hundred microns. This method is universal and expected to be applicable to a wide variety of different semiconductor material systems. We apply the method to enable growth of ultra-low noise QDs across an entire 3-inch semiconductor wafer

    Temporal dynamics of spectral reflectance and vegetation indices during canola crop cycle in southern Brazil

    Get PDF
    ABSTRACT: The objective of this study was to characterize the variability of spectral reflectance and temporal profiles of vegetation indices associated with nitrogen fertilization, crop cycle periods, and weather conditions of the growing season in canola canopies in southern Brazil. An experiment was carried out during the 2013 and 2014 canola growing seasons at EMBRAPA Trigo, Passo Fundo, state of Rio Grande do Sul, Brazil. The experiment was conducted in a randomized block design with four replications. Five doses of nitrogen top dressing were used as treatments: 10, 20, 40, 80, and 160kg ha-1. Measurements were obtained with the spectroradiometer positioned above the canopy, to construct spectral reflectance curves for canola and establish temporal profiles for several vegetation indices (SR, NDVI, EVI, SAVI, and GNDVI). In addition, data on shoot dry matter were obtained and phenological stages were determined. The spectral reflectance curves of canola were reported to change with canopy growth and development. Temporal profiles of vegetation indices showed two maximum peaks, one before flowering and other after flowering. The indices SR, NDVI, EVI, SAVI, and GNDVI were able to characterize changes in the canola canopy over time, as a function of phenological phases, weather conditions, and nitrogen fertilization, throughout the development cycle. Plant growth and development, variations in crop management, and environmental conditions affect the spectral response of canola
    corecore