5,496 research outputs found
The use of active controls to augment rotor/fuselage stability
The use of active blade pitch control to increase helicopter rotor/body damping is studied. Control is introduced through a conventional nonrotating swashplate. State variable feedback of rotor and body states is used. Feedback parameters include cyclic rotor flap and lead-lag states, and body pitch and roll rotations. The use of position, rate, and acceleration feedback is studied for the various state variables. In particular, the influence of the closed loop feedback gain and phase on system stability is investigated. For the rotor/body configuration analyzed, rotor cyclic inplane motion and body roll-rate and roll-acceleration feedback can considerably augment system damping levels and eliminate ground resonance instabilities. Scheduling of the feedback state, phase, and gain with rotor rotation speed can be used to maximize the damping augmentation. This increase in lead-lag damping can be accomplished without altering any of the system modal frequencies. Investigating various rotor design parameters (effective hinge offset, blade precone, blade flap stiffness) indicates that active control for augmenting rotor/body damping will be particularly powerful for hingeless and bearingless rotor hubs
Application of the Finite Element Method to Rotary Wing Aeroelasticity
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method
Application of higher harmonic blade feathering on the OH-6A helicopter for vibration reduction
The design, implementation, and flight test results of higher harmonic blade feathering for vibration reduction on the OH-6A helicopter are described. The higher harmonic control (HHC) system superimposes fourth harmonic inputs upon the stationary swashplate. These inputs are transformed into 3P, 4P and 5P blade feathering angles. This results in modified blade loads and reduced fuselage vibrations. The primary elements of this adaptive vibration suppression system are: (1) acceleration transducers sensing the vibratory response of the fuselage; (2) a higher harmonic blade pitch actuator system; (3) a flightworthy microcomputer, incorporating the algorithm for reducing vibrations, and (4) a signal conditioning system, interfacing between the sensors, the microcomputer and the HHC actuators. The program consisted of three distinct phases. First, the HHC system was designed and implemented on the MDHC OH-6A helicopter. Then, the open loop, or manual controlled, flight tests were performed, and finally, the closed loop adaptive control system was tested. In 1983, one portion of the closed loop testing was performed, and in 1984, additional closed loop tests were conducted with improved software. With the HHC system engaged, the 4P pilot seat vibration levels were significantly lower than the baseline ON-6A levels. Moreover, the system did not adversely affect blade loads or helicopter performance. In conclusion, this successful proof of concept project demonstrated HHC to be a viable vibration suppression mechanism
Study to eliminate ground resonance using active controls
The effectiveness of active control blade feathering in increasing rotor body damping and the possibility to eliminate ground resonance instabilities were investigated. An analytical model representing rotor flapping and lead-lag degrees of freedom and body pitch, roll, longitudinal and lateral motion is developed. Active control blade feathering is implemented as state variable feedback through a conventional swashplate. The influence of various feedback states, feedback gain, and weighting between the cyclic controls is studied through stability and response analyses. It is shown that blade cyclic inplane motion, roll rate and roll acceleration feedback can add considerable damping to the system and eliminate ground resonance instabilities, which the feedback phase is also a powerful parameter, if chosen properly, it maximizes augmentation of the inherent regressing lag mode damping. It is shown that rotor configuration parameters, like blade root hinge offset, flapping stiffness, and precone considerably influence the control effectiveness. It is found that active control is particularly powerful for hingeless and bearingless rotor systems
Probing the Mechanisms of Fibril Formation Using Lattice Models
Using exhaustive Monte Carlo simulations we study the kinetics and mechanism
of fibril formation using lattice models as a function of temperature and the
number of chains. While these models are, at best, caricatures of peptides, we
show that a number of generic features thought to govern fibril assembly are
present in the toy model. The monomer, which contains eight beads made from
three letters (hydrophobic, polar, and charged), adopts a compact conformation
in the native state. The kinetics of fibril assembly occurs in three distinct
stages. In each stage there is a cascade of events that transforms the monomers
and oligomers to ordered structures. In the first "burst" stage highly mobile
oligomers of varying sizes form. The conversion to the aggregation-prone
conformation occurs within the oligomers during the second stage. As time
progresses, a dominant cluster emerges that contains a majority of the chains.
In the final stage, the aggregation-prone conformation particles serve as a
template onto which smaller oligomers or monomers can dock and undergo
conversion to fibril structures. The overall time for growth in the latter
stages is well described by the Lifshitz-Slyazov growth kinetics for
crystallization from super-saturated solutions.Comment: 27 pages, 6 figure
Classical to Quantum Transition of a Driven Nonlinear Nanomechanical Resonator
We seek the first indications that a nanoelectromechanical system (NEMS) is
entering the quantum domain as its mass and temperature are decreased. We find
them by studying the transition from classical to quantum behavior of a driven
nonlinear Duffing resonator. Numerical solutions of the equations of motion,
operating in the bistable regime of the resonator, demonstrate that the quantum
Wigner function gradually deviates from the corresponding classical phase-space
probability density. These clear differences that develop due to nonlinearity
can serve as experimental evidence, in the near future, that NEMS resonators
are entering the quantum domain
Accuracy of computerized tomography in determining hepatic tumor size in patients receiving liver transplantation or resection
Computerized tomography (CT) of liver is used in oncologic practice for staging tumors, evaluating response to treatment, and screening patients for hepatic resection. Because of the impact of CT liver scan on major treatment decisions, it is important to assess its accuracy. Patients undergoing liver transplantation or resection provide a unique opportunity to test the accuracy of hepatic-imaging techniques by comparison of finding of preoperative CT scan with those at gross pathologic examination of resected specimens. Forty-one patients who had partial hepatic resection (34 patients) or liver transplantation (eight patients) for malignant (30 patients) or benign (11 patients) tumors were evaluable. Eight (47%) of 17 patients with primary malignant liver tumors, four (31%) of 13 patients with metastatic liver tumors, and two (20%) of 10 patients with benign liver tumors had tumor nodules in resected specimens that were not apparent on preoperative CT studies. These nodules varied in size from 0.1 to 1.6 cm. While 11 of 14 of these nodules were 1.0 cm. These results suggest that conventional CT alone may be insufficient to accurately determine the presence or absence of liver metastases, extent of liver involvement, or response of hepatic metastases to treatment
- …