2,859 research outputs found

    Identification of the dominant precession damping mechanism in Fe, Co, and Ni by first-principles calculations

    Full text link
    The Landau-Lifshitz equation reliably describes magnetization dynamics using a phenomenological treatment of damping. This paper presents first-principles calculations of the damping parameters for Fe, Co, and Ni that quantitatively agree with existing ferromagnetic resonance measurements. This agreement establishes the dominant damping mechanism for these systems and takes a significant step toward predicting and tailoring the damping constants of new materials.Comment: 4 pages, 1 figur

    The Order of Embryonic Determination of Several Organs in Macrosiphum solanifolii

    Get PDF
    Aphids in nature are normally either winged or wingless. However, it has been found that there also occur individuals which are intermediate in wing development: that is to say, some individuals have only partly formed wings and therefore are intermediate between the winged and wingless types. The production of large numbers of intermediate-winged aphids can be induced in the laboratory by artificial means such as certain combinations of light and temperature

    Non-Adiabatic Spin Transfer Torque in Real Materials

    Full text link
    The motion of simple domain walls and of more complex magnetic textures in the presence of a transport current is described by the Landau-Lifshitz-Slonczewski (LLS) equations. Predictions of the LLS equations depend sensitively on the ratio between the dimensionless material parameter β\beta which characterizes non-adiabatic spin-transfer torques and the Gilbert damping parameter α\alpha. This ratio has been variously estimated to be close to 0, close to 1, and large compared to 1. By identifying β\beta as the influence of a transport current on α\alpha, we derive a concise, explicit and relatively simple expression which relates β\beta to the band structure and Bloch state lifetimes of a magnetic metal. Using this expression we demonstrate that intrinsic spin-orbit interactions lead to intra-band contributions to β\beta which are often dominant and can be (i) estimated with some confidence and (ii) interpreted using the "breathing Fermi surface" model.Comment: 18 pages, 9 figures; submitted to Phys. Rev.

    Winter Conditions Influence Biological Responses of Migrating Hummingbirds

    Full text link
    Conserving biological diversity given ongoing environmental changes requires the knowledge of how organisms respond biologically to these changes; however, we rarely have this information. This data deficiency can be addressed with coordinated monitoring programs that provide field data across temporal and spatial scales and with process-based models, which provide a method for predicting how species, in particular migrating species that face different conditions across their range, will respond to climate change. We evaluate whether environmental conditions in the wintering grounds of broad-tailed hummingbirds influence physiological and behavioral attributes of their migration. To quantify winter ground conditions, we used operative temperature as a proxy for physiological constraint, and precipitation and the normalized difference vegetation index (NDVI) as surrogates of resource availability. We measured four biological response variables: molt stage, timing of arrival at stopover sites, body mass, and fat. Consistent with our predictions, we found that birds migrating north were in earlier stages of molt and arrived at stopover sites later when NDVI was low. These results indicate that wintering conditions impact the timing and condition of birds as they migrate north. In addition, our results suggest that biologically informed environmental surrogates provide a valuable tool for predicting how climate variability across years influences the animal populations

    Spin wave excitations: The main source of the temperature dependence of Interlayer exchange coupling in nanostructures

    Full text link
    Quantum mechanical calculations based on an extended Heisenberg model are compared with ferromagnetic resonance (FMR) experiments on prototype trilayer systems Ni_7/Cu_n/Co_2/Cu(001) in order to determine and separate for the first time quantitatively the sources of the temperature dependence of interlayer exchange coupling. Magnon excitations are responsible for about 75% of the reduction of the coupling strength from zero to room temperature. The remaining 25% are due to temperature effects in the effective quantum well and the spacer/magnet interfaces.Comment: accepted for publication in PR

    Grazing Alfalfa at the Western Kentucky University Farm

    Get PDF
    Alfalfa has been around for centuries. In all this time, it was used in many different ways to provide high quality forage to livestock. In fact, in the area where alfalfa originated, the word actually means horse power . We have come a long way since then and alfalfa is used for a wide range of animals, from rabbits to rhinos. In order to maximize the efficiency of utilization of alfalfa, it has become necessary to graze it. Grazing is preferred over harvesting and storage for several reasons: less equipment and thus lower cost, less harvest loss, and greater quality forage because of retained leaves. These benefits are well known and they attract many producers to intensify their grazing to reap the benefits

    Progress in radar snow research

    Get PDF
    Multifrequency measurements of the radar backscatter from snow-covered terrain were made at several sites in Brookings, South Dakota, during the month of March of 1979. The data are used to examine the response of the scattering coefficient to the following parameters: (1) snow surface roughness, (2) snow liquid water content, and (3) snow water equivalent. The results indicate that the scattering coefficient is insensitive to snow surface roughness if the snow is drv. For wet snow, however, surface roughness can have a strong influence on the magnitude of the scattering coefficient. These observations confirm the results predicted by a theoretical model that describes the snow as a volume of Rayleig scatterers, bounded by a Gaussian random surface. In addition, empirical models were developed to relate the scattering coefficient to snow liquid water content and the dependence of the scattering coefficient on water equivalent was evaluated for both wet and dry snow conditions

    Charge pumping and the colored thermal voltage noise in spin valves

    Full text link
    Spin pumping by a moving magnetization gives rise to an electric voltage over a spin valve. Thermal fluctuations of the magnetization manifest themselves as increased thermal voltage noise with absorption lines at the ferromagnetic resonance frequency and/or zero frequency. The effect depends on the magnetization configuration and can be of the same order of magnitude as the Johnson-Nyquist thermal noise. Measuring colored voltage noise is an alternative to ferromagnetic resonance experiments for nano-scale ferromagnetic circuits.Comment: 9 pages, 2 figure

    Neuregulin-1 attenuates experimental cerebral malaria (ECM) pathogenesis by regulating ErbB4/AKT/STAT3 signaling.

    Get PDF
    BACKGROUND:Human cerebral malaria (HCM) is a severe form of malaria characterized by sequestration of infected erythrocytes (IRBCs) in brain microvessels, increased levels of circulating free heme and pro-inflammatory cytokines and chemokines, brain swelling, vascular dysfunction, coma, and increased mortality. Neuregulin-1β (NRG-1) encoded by the gene NRG1, is a member of a family of polypeptide growth factors required for normal development of the nervous system and the heart. Utilizing an experimental cerebral malaria (ECM) model (Plasmodium berghei ANKA in C57BL/6), we reported that NRG-1 played a cytoprotective role in ECM and that circulating levels were inversely correlated with ECM severity. Intravenous infusion of NRG-1 reduced ECM mortality in mice by promoting a robust anti-inflammatory response coupled with reduction in accumulation of IRBCs in microvessels and reduced tissue damage. METHODS:In the current study, we examined how NRG-1 treatment attenuates pathogenesis and mortality associated with ECM. We examined whether NRG-1 protects against CXCL10- and heme-induced apoptosis using human brain microvascular endothelial (hCMEC/D3) cells and M059K neuroglial cells. hCMEC/D3 cells grown in a monolayer and a co-culture system with 30 μM heme and NRG-1 (100 ng/ml) were used to examine the role of NRG-1 on blood brain barrier (BBB) integrity. Using the in vivo ECM model, we examined whether the reduction of mortality was associated with the activation of ErbB4 and AKT and inactivation of STAT3 signaling pathways. For data analysis, unpaired t test or one-way ANOVA with Dunnett's or Bonferroni's post test was applied. RESULTS:We determined that NRG-1 protects against cell death/apoptosis of human brain microvascular endothelial cells and neroglial cells, the two major components of BBB. NRG-1 treatment improved heme-induced disruption of the in vitro BBB model consisting of hCMEC/D3 and human M059K cells. In the ECM murine model, NRG-1 treatment stimulated ErbB4 phosphorylation (pErbB4) followed by activation of AKT and inactivation of STAT3, which attenuated ECM mortality. CONCLUSIONS:Our results indicate a potential pathway by which NRG-1 treatment maintains BBB integrity in vitro, attenuates ECM-induced tissue injury, and reduces mortality. Furthermore, we postulate that augmenting NRG-1 during ECM therapy may be an effective adjunctive therapy to reduce CNS tissue injury and potentially increase the effectiveness of current anti-malaria therapy against human cerebral malaria (HCM)

    Evaluation of the soil moisture prediction accuracy of a space radar using simulation techniques

    Get PDF
    Image simulation techniques were employed to generate synthetic aperture radar images of a 17.7 km x 19.3 km test site located east of Lawrence, Kansas. The simulations were performed for a space SAR at an orbital altitude of 600 km, with the following sensor parameters: frequency = 4.75 GHz, polarization = HH, and angle of incidence range = 7 deg to 22 deg from nadir. Three sets of images were produced corresponding to three different spatial resolutions; 20 m x 20 m with 12 looks, 100 m x 100 m with 23 looks, and 1 km x 1 km with 1000 looks. Each set consisted of images for four different soil moisture distributions across the test site. Results indicate that, for the agricultural portion of the test site, the soil moisture in about 90% of the pixels can be predicted with an accuracy of = + or - 20% of field capacity. Among the three spatial resolutions, the 1 km x 1 km resolution gave the best results for most cases, however, for very dry soil conditions, the 100 m x 100 m resolution was slightly superior
    corecore