222 research outputs found

    Phylogenetic relationships in the subgenus Mus ( genus Mus, family Muridae, subfamily Murinae): examining gene trees and species trees

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75415/1/j.1095-8312.2005.00462.x.pd

    p53 mutations in urinary bladder cancer

    Get PDF
    We have screened for mutations in exons 5–8 of the p53 gene in a series consisting of 189 patients with urinary bladder neoplasms. 82 (44%) neoplasms were lowly malignant (Ta, G1–G2a) and 106 (56%) were highly malignant (G2b–G4 or ≥T1). Only one mutation was in a lowly malignant urinary bladder neoplasm, in total we found p53 mutations in 26 (14%) of the 189 patients. 30% of the samples had loss of heterozygosity (LOH) for one or both of the p53 exogenic (CA)n repeat and the p53 intragenic (AAAAT)n repeat markers. 31 samples (21%) showed LOH but were not mutated, suggesting other mechanisms inactivating p53 than mutations. 4 mutations were found at codon 280 and 2 mutations were found at codon 285, 2 previously reported hot spots for urinary bladder cancer. The study indicate a boundary between G2a and G2b tumours concerning the occurrence of genetic events affecting p53 function; moderately differentiated (G2) urinary bladder neoplasms probably are genetically heterogeneous which supports the suggestion that they should not be grouped together but instead, for example, be categorized as either lowly or highly malignant. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Comparing different revisions of the Childhood Health Assessment Questionnaire to reduce the ceiling effect and improve score distribution: Data from a multi-center European cohort study of children with JIA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The original version of the Childhood Health Assessment Questionnaire (CHAQ30orig) suffers from a ceiling effect and hence has reduced clinical validity. The purpose of this study was to evaluate the effect of adding eight more demanding items (CHAQ38) and a new categorical response option (CATII) on discriminant validity and score distribution in a European patient sample.</p> <p>Methods</p> <p>Eighty-nine children with Juvenile Idiopathic arthritis (JIA) and 22 healthy controls, aged 7-16 years, were recruited from eight centres across Europe. Eight new CHAQ items and scoring option were translated back and forth for the countries in which they were not already present. Demographic, clinical, and CHAQ data were collected on-site. Subsequently, five different scoring methods were applied, i.e. the original method (CHAQ30orig) and four alternatives. These alternatives consisted of the mean item scores for the 30 and 38-question versions with either the original (CATI), or the new categorical response option (CATII). The five versions were tested for their ability to distinguish between patients and controls. Furthermore score distributions were evaluated and visualized by box and whisker plots.</p> <p>Results</p> <p>Two CHAQ revisions with the new response option showed poor discriminative ability, whereas one revised version (CHAQ38CATI) had comparable discriminative ability comparable to the original CHAQ. A profound ceiling effect was observed in the original scoring method of the CHAQ (27%). The addition of eight more demanding items and application of a plain mean item score reduced this significantly to 14% (χ<sup>2 </sup>= 4.21; p < 0.05).</p> <p>Conclusions</p> <p>Revising the CHAQ by adding eight more demanding items and applying a plain mean item scoring (CHAQ38CATI) maintained discriminant ability and reduced the ceiling effect in a European patient sample. The new categorical response option (CATII) seemed promising, but was less able to distinguish children with JIA from healthy controls and had less favourable distribution characteristics. The CHAQ38CATI is advocated for future use in mildly affected JIA patients.</p

    Molecular analysis of three known and one novel LPL variants in patients with type I hyperlipoproteinemia.

    Get PDF
    Abstract Background and aims Type I hyperlipoproteinemia, also known as familial chylomicronemia syndrome (FCS), is a rare autosomal recessive disorder caused by variants in LPL, APOC2, APOA5, LMF1 or GPIHBP1 genes. The aim of this study was to identify novel variants in the LPL gene causing lipoprotein lipase deficiency and to understand the molecular mechanisms. Methods and results A total of 3 individuals with severe hypertriglyceridemia and recurrent pancreatitis were selected from the Lipid Clinic at Sahlgrenska University Hospital and LPL was sequenced. In vitro experiments were performed in human embryonic kidney 293T/17 (HEK293T/17) cells transiently transfected with wild type or mutant LPL plasmids. Cell lysates and media were used to analyze LPL synthesis and secretion. Media were used to measure LPL activity. Patient 1 was compound heterozygous for three known variants: c.337T > C (W113R), c.644G > A (G215E) and c.1211T > G (M404R); patient 2 was heterozygous for the known variant c.658A > C (S220R) while patient 3 was homozygous for a novel variant in the exon 5 c.679G > T (V227F). All the LPL variants identified were loss-of-function variants and resulted in a substantial reduction in the secretion of LPL protein. Conclusion We characterized at the molecular level three known and one novel LPL variants causing type I hyperlipoproteinemia showing that all these variants are pathogenic

    Individuals with familial hypercholesterolemia and cardiovascular events have higher circulating Lp(a) levels

    Get PDF
    BACKGROUND: Cardiovascular disease (CVD) is a major cause of mortality and morbidity. Increased low-density lipoprotein cholesterol (LDL-C) level is its major risk factor. Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated LDL-C since birth and subsequent premature CVD. There is a heterogeneity in the CVD onset in patients with FH. This is potentially due to the presence of other independent risk factors. Lipoprotein(a) [Lp(a)] is an LDL-like particle and represents a strong risk factor for CVD. OBJECTIVE: Our objective was to understand the contribution of Lp(a) in the susceptibility to CVD in individuals with genetic diagnosis of FH. METHODS: We measured Lp(a) levels in 2 independent and well-characterized genetic-FH cohorts: the FH-Gothenburg cohort (n = 190) and the FH-CEGP Milan cohort (n = 160). The genetic diagnosis was performed by targeted next-generation sequencing (FH-Gothenburg and part of the FH-CEGP Milan cohort), or by Sanger sequencing. RESULTS: We show that among individuals with genetic diagnosis of FH, those with previous CVD had higher Lp(a) levels. In addition, analyzing the response to the lipid-lowering therapies, we have also shown that statins had the same LDL-C-lowering effect irrespective of the type of FH-causative mutation. However, when we examined the lipid-lowering effect of proprotein convertase subtilisin/kexin type 9 inhibition by antibodies, we observed a trend in a better reduction of the LDL-C level in carriers of nonsense mutations. CONCLUSION: In conclusion, our results suggest that Lp(a) contributes to CVD onset in individuals with genetic diagnosis of FH. Our finding supports the importance to identify an efficacious therapy to lower Lp(a) in patients with FH to prevent CVD onset or recurrence

    Characteristics and outcome of pediatric renal cell carcinoma patients registered in the International Society of Pediatric Oncology (SIOP) 93‐01, 2001 and UK‐IMPORT database: A report of the SIOP‐Renal Tumor Study Group

    Get PDF
    In children, renal cell carcinoma (RCC) is rare. This study is the first report of pediatric patients with RCC registered by the International Society of Pediatric Oncology‐Renal Tumor Study Group (SIOP‐RTSG). Pediatric patients with histologically confirmed RCC, registered in SIOP 93‐01, 2001 and UK‐IMPORT databases, were included. Event‐free survival (EFS) and overall survival (OS) were analyzed using the Kaplan‐Meier method. Between 1993 and 2019, 122 pediatric patients with RCC were registered. Available detailed data (n = 111) revealed 56 localized, 30 regionally advanced, 25 metastatic and no bilateral cases. Histological classification according to World Health Organization 2004, including immunohistochemical and molecular testing for transcription factor E3 (TFE3) and/or EB (TFEB) translocation, was available for 65/122 patients. In this group, the most common histological subtypes were translocation type RCC (MiT‐RCC) (36/64, 56.3%), papillary type (19/64, 29.7%) and clear cell type (4/64, 6.3%). One histological subtype was not reported. In the remaining 57 patients, translocation testing could not be performed, or TFE‐cytogenetics and/or immunohistochemistry results were missing. In this group, the most common RCC histological subtypes were papillary type (21/47, 44.7%) and clear cell type (11/47, 23.4%). Ten histological subtypes were not reported. Estimated 5‐year (5y) EFS and 5y OS of the total group was 70.5% (95% CI = 61.7%‐80.6%) and 84.5% (95% CI = 77.5%‐92.2%), respectively. Estimated 5y OS for localized, regionally advanced, and metastatic disease was 96.8%, 92.3%, and 45.6%, respectively. In conclusion, the registered pediatric patients with RCC showed a reasonable outcome. Survival was substantially lower for patients with metastatic disease. This descriptive study stresses the importance of full, prospective registration including TFE‐testing

    Leptospira seroprevalence and associations between seropositivity, clinical disease and host factors in horses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cross-sectional study was carried out to determine the seroprevalence of different serovars of <it>Leptospira </it>spp. and their association with clinical disease and host factors in Swedish horses.</p> <p>Methods</p> <p>Sera from 2017 horses brought to equine clinics during 1997–98 were investigated. The sera were examined by microscopic agglutination test for the presence of antibodies against the following <it>L. interrogans </it>serovars: Bratislava strain Jez, Icterohaemorrhagiae strain Kantorowicz and Pomona strain Pomona and also <it>L. kirschneri </it>sv Grippotyphosa strain Duyster and <it>L. borgpetersenii </it>sv Sejroe strain M 84. Host factors, disease factors, season, pasture access and outdoor confinement variables were analysed with respect to seropositivity to sv Bratislava and Icterohaemorrhagiae. Multivariable logistic regression was used to model seropositivity to sv Bratislava and Icterohaemorrhagiae (seroprevalence > 8%).</p> <p>Results</p> <p>The seroprevalence, at a cut-off 1:100, were for sv Bratislava (16.6%), Icterohaemorrhagiae (8.3%), Sejroe (1.2%), Pomona (0.5%) and Grippotyphosa (0.4%). In the multivariable analysis, it was demonstrated that seroprevalence increased with age for sv Bratislava and Icterohaemorrhagiae. For sv Bratislava the seasons April – June and October – December and for sv Icterohaemorrhagiae October – December had higher seroprevalences than other seasons. Horses not used for racing had higher levels of seropositivity to sv Bratislava. Furthermore, horses with respiratory problems as well as horses with fatigue had higher levels of seropositivity to sv Bratislava. Ponies and coldbloods, and horses with access to pasture, had lower seroprevalence for sv Icterohaemorrhagiae. Healthy horses had lower seroprevalence for sv Icterohaemorrhagiae, than non-healthy horses.</p> <p>Conclusion</p> <p>There was no significant association between clinical signs and disease and positive titres to sv Bratislava (except for the association between respiratory problems and fatigue and seropositivity to sv Bratislava). The results suggest that horses with increasing age and exposed to factors associated with outdoor life had an increased seroprevalence for sv Bratislava, indicating that horses get infected from outdoor and/or are exposed to shedding from other horses (management dependent). For sv Icterohaemorrhagiae, management possibly plays a role as ponies and coldbloods as well as healthy horses had lower seroprevalence. Overall, the age of the horse should be taken into consideration when evaluating the titre as the average healthy horse has a higher titre than a young horse.</p
    corecore