77 research outputs found

    Evidence for a rapid decrease in Pluto's atmospheric pressure revealed by a stellar occultation in 2019

    Full text link
    We report observations of a stellar occultation by Pluto on 2019 July 17. A single-chord high-speed (time resolution =2= 2\,s) photometry dataset was obtained with a CMOS camera mounted on the Tohoku University 60 cm telescope (Haleakala, Hawaii). The occultation light curve is satisfactorily fitted to an existing Pluto's atmospheric model. We find the lowest pressure value at a reference radius of r=1215 kmr = 1215~{\rm km} among those reported after 2012, indicating a possible rapid (approximately 215+4%21^{+4}_{-5} \% of the previous value) pressure drop between 2016 (the latest reported estimate) and 2019. However, this drop is detected at a 2.4σ2.4\sigma level only and still requires confirmation from future observations. If real, this trend is opposite to the monotonic increase of Pluto's atmospheric pressure reported by previous studies. The observed decrease trend is possibly caused by ongoing N2{\rm N_2} condensation processes in the Sputnik Planitia glacier associated with an orbitally driven decline of solar insolation, as predicted by previous theoretical models. However, the observed amplitude of the pressure decrease is larger than the model predictions.Comment: 7 pages, 3 figures, accepted for publication in Astronomy and Astrophysic

    High-precision polarimetry of nearby stars (d < 50 pc): Mapping the interstellar dust and magnetic field inside the Local Bubble

    Get PDF
    Context:We investigate the linear polarization produced by interstellar dust aligned by the magnetic field in the solar neighborhood (d Aims: We aim to detect and map dust clouds which give rise to statistically significant amounts of polarization of the starlight passing through the cloud, and to determine the interstellar magnetic field direction from the position angle of the observed polarization.Methods: High-precision broad-band (BV R) polarization observations are made of 361 stars in spectral classes F to G, with detection sensitivity at the level of or better than 10−5 (0.001%). The sample consists of 125 stars in the magnitude range 6–9 observed at the 2.2 m UH88 telescope on Mauna Kea, 205 stars in the magnitude range 3–6 observed at the Japanese (Tohoku) T60 telescope on Haleakala, and 31 stars in the magnitude range 4–7 observed at the 1.27 m H127 telescope of the Greenhill Observatory, Tasmania. Identical copies of the Dipol-2 polarimeter are used on these three sites.Results: Statistically significant (>3σ) polarization is found in 115 stars, and >2σ detection in 178 stars, out of the total sample of 361 stars. Polarization maps based on these data show filament-like patterns of polarization position angles, which are related to both the heliosphere geometry, the kinematics of nearby clouds, and the Interstellar Boundary EXplorer ribbon magnetic field. From long-term multiple observations, a number (~20) of stars show evidence of intrinsic variability at the 10−5 level. This can be attributed to circumstellar effects (e.g., debris disks and chromospheric activity). The star HD 101805 shows a peculiar wavelength dependence, indicating size distribution of scattering particles different from that of a typical interstellar medium. Our high signal-to-noise measurements of nearby stars with very low polarization also provide a useful dataset for calibration purposes

    Ion-dispersion and rapid electron fluctuations in the cusp: a case study

    Get PDF
    We present results from co-ordinated measurements with the low altitude REIMEI satellite and the ESR (EISCAT Svalbard Radar), together with other ground-based instruments carried out in February 2006. The results mainly relate to the dayside cusp where clear signatures of so-called ion-dispersion are seen in the satellite data. The cusp ion-dispersion is important for helping to understand the temporal and spatial structure of magnetopause reconnection. Whenever a satellite crosses boundaries of flux tubes or convection cells, cusp structures such as ion-dispersion will always be encountered. In our case we observed 3 distinct steps in the ion energy, but it includes at least 2 more steps as well, which we interpret as temporal features in relation to pulsed reconnection at the magnetopause. In addition, fast variations of the electron flux and energy occurring during these events have been studied in detail. The variations of the electron population, if interpreted as structures crossed by the REIMEI satellite, would map near the magnetopause to similar features as observed previously with the Cluster satellites. These were explained as Alfvén waves originating from an X-line of magnetic reconnection

    Energy distribution of precipitating electrons estimated from optical and cosmic noise absorption measurements

    No full text
    International audienceThis study is a statistical analysis on energy distribution of precipitating electrons, based on CNA (cosmic noise absorption) data obtained from the 256-element imaging riometer in Poker Flat, Alaska (65.11° N, 147.42° W), and optical data measured with an MSP (Meridian Scanning Photometer) over 79 days during the winter periods from 1996 to 1998. On the assumption that energy distributions of precipitating electrons represent Maxwellian distributions, CNA is estimated based on the observation data of auroral 427.8-nm and 630.0-nm emissions, as well as the average atmospheric model, and compared with the actual observation data. Although the observation data have a broad distribution, they show systematically larger CNA than the model estimate. CNA determination using kappa or double Maxwellian distributions, instead of Maxwellian distributions, better explains the distribution of observed CNA data. Kappa distributions represent a typical energy distribution of electrons in the plasma sheet of the magnetosphere, the source region of precipitating electrons. Pure kappas are more likely during quiet times ? and quiet times are more likely than active times. This result suggests that the energy distribution of precipitating electrons reflects the energy distribution of electrons in the plasma sheet. Key words. Ionosphere (auroral ionosphere; particle precipitation; polar ionosphere

    Relativistic Electron Microbursts as High‐Energy Tail of Pulsating Aurora Electrons

    Get PDF
    オーロラの明滅とともに、宇宙からキラー電子が降ってくることを解明. 京都大学プレスリリース. 2020-11-13.In this study, by simulating the wave‐particle interactions, we show that subrelativistic/relativistic electron microbursts form the high‐energy tail of pulsating aurora (PsA). Whistler‐mode chorus waves that propagate along the magnetic field lines at high latitudes cause precipitation bursts of electrons with a wide energy range from a few kiloelectron volts (PsA) to several megaelectron volts (relativistic microbursts). The rising tone elements of chorus waves cause individual microbursts of subrelativistic/relativistic electrons and the internal modulation of PsA with a frequency of a few hertz. The chorus bursts for a few seconds cause the microburst trains of subrelativistic/relativistic electrons and the main pulsations of PsA. Our simulation studies demonstrate that both PsA and relativistic electron microbursts originate simultaneously from pitch angle scattering by chorus wave‐particle interactions along the field line
    corecore