1,365 research outputs found

    Air ions induced aerosol sensing by eye-safe LIDAR

    Full text link
    Low concentrations aerosols quantification is rather challenging for LIDAR instruments due to eye-safety restrictions so high energy pulses cannot be utilized to improve the sensitivity. Highly sensitive but eye-save LIDAR has been developed for the quantification of the water droplet aerosol which was induced by air ions. Few days sensing of aerosols in closed tunnel revealed a strong correlation between air optical transparency (LIDAR measurements) and concentrations of positive/negative ions (ion counter Sapphir 3-M). The correlation coefficient was observed to be almost unity for the air transparency signal and air ions unipolarity coefficient. High sensitivity of the water droplet aerosol quantification makes the developed eye-safe LIDAR a perspective instrument for space resolved measurements of the air ions distribution. Space and time resolved measurements of air ions exhalation can be a new instrument for tectonic activity study including new earthquake forecasting indicators search

    Recognizing Treelike k-Dissimilarities

    Full text link
    A k-dissimilarity D on a finite set X, |X| >= k, is a map from the set of size k subsets of X to the real numbers. Such maps naturally arise from edge-weighted trees T with leaf-set X: Given a subset Y of X of size k, D(Y) is defined to be the total length of the smallest subtree of T with leaf-set Y . In case k = 2, it is well-known that 2-dissimilarities arising in this way can be characterized by the so-called "4-point condition". However, in case k > 2 Pachter and Speyer recently posed the following question: Given an arbitrary k-dissimilarity, how do we test whether this map comes from a tree? In this paper, we provide an answer to this question, showing that for k >= 3 a k-dissimilarity on a set X arises from a tree if and only if its restriction to every 2k-element subset of X arises from some tree, and that 2k is the least possible subset size to ensure that this is the case. As a corollary, we show that there exists a polynomial-time algorithm to determine when a k-dissimilarity arises from a tree. We also give a 6-point condition for determining when a 3-dissimilarity arises from a tree, that is similar to the aforementioned 4-point condition.Comment: 18 pages, 4 figure

    Stabilization of α-conotoxin AuIB: Influences of disulfide connectivity and backbone cyclization

    Get PDF
    alpha-Conotoxins are peptides isolated from the venom ducts of cone snails that target nicotinic acetylcholine receptors (nAChRs). They are valuable pharmacological tools and have potential applications for treating a range of conditions in humans, including pain. However, like all peptides, conotoxins are susceptible to degradation, and to enhance their therapeutic potential it is important to elucidate the factors contributing to instability and to develop approaches for improving stability. AuIB is a unique member of the alpha-conotoxin family because the nonnative "ribbon'' disulfide isomer exhibits enhanced activity at the nAChR in rat parasympathetic neurons compared with the native "globular'' isomer. Here we show that the ribbon isomer of AuIB is also more resistant to disulfide scrambling, despite having a nonnative connectivity and flexible structure. This resistance to disulfide scrambling does not correlate with overall stability in serum because the ribbon isomer is degraded in human serum more rapidly than the globular isomer. Cyclization via the joining of the N- and C-termini with peptide linkers of four to seven amino acids prevented degradation of the ribbon isomer in serum and stabilized the globular isomers to disulfide scrambling. The linker length used for cyclization strongly affected the relative proportions of the disulfide isomers produced by oxidative folding. Overall, the results of this study provide important insights into factors influencing the stability and oxidative folding of alpha-conotoxin AuIB and might be valuable in the design of more stable antagonists of nAChRs. Antioxid. Redox Signal. 14, 87-95
    corecore