Air ions induced aerosol sensing by eye-safe LIDAR

Abstract

Low concentrations aerosols quantification is rather challenging for LIDAR instruments due to eye-safety restrictions so high energy pulses cannot be utilized to improve the sensitivity. Highly sensitive but eye-save LIDAR has been developed for the quantification of the water droplet aerosol which was induced by air ions. Few days sensing of aerosols in closed tunnel revealed a strong correlation between air optical transparency (LIDAR measurements) and concentrations of positive/negative ions (ion counter Sapphir 3-M). The correlation coefficient was observed to be almost unity for the air transparency signal and air ions unipolarity coefficient. High sensitivity of the water droplet aerosol quantification makes the developed eye-safe LIDAR a perspective instrument for space resolved measurements of the air ions distribution. Space and time resolved measurements of air ions exhalation can be a new instrument for tectonic activity study including new earthquake forecasting indicators search

    Similar works

    Full text

    thumbnail-image

    Available Versions