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COMPUTER SIMULATION OF PHASE MOTION
IN THE CW RACETRACK MICROTRON
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An approach to phase-motion analysis in the racetrack microtron (RTM) is proposed. The approach is
based on the notion of an asymptotically synchronous particle. The RTM separatrix is studied as a
function of injection energy, fringing field of. the bending magnets, and distance between magnets.
The acceptance values for injected energies of 5, 7, and 9 MeV are ""'6.2/1t MeV· deg,
""'8.8/1t MeV· deg, and ""'9.5/1t MeV· deg, respectively. (The parameters of the RTM designed at the
Institute of Nuclear Physics, Moscow State University, were used in the calculations.) The preferred
initial conditions providing the beam with a given monochromaticity at the RTM output are
suggested. Calculations show that, in order to obtain a 10-4 monochromaticity of the final beam, the
longitudinal emittance should be .""'5 keV . deg, i.e., 0.2% of the acceptance, and the ellipse formed
by the RTM injection system should have the corresponding axis inclination in phase space.

Different factors affecting the RTM beam monochromaticity, such as transverse particle motion,
radial and time dependence of the accelerating field, inhomogeneity, and instability of the bending
magnet field, are estimated. It is shown that the nonlinear distortions of the beam phase shape for
~B /B = ±10-3 lead to more stringent requirements for the longitudinal emittance.

1. INTRODUCTION

CW racetrack microtron (RTM) is being designed and manufactured at the
Institute of Nuclear Physics, Moscow State University. 1 A schematic drawing of
the accelerator is shown in Fig. 1, and the main parameters of the accelerator are
listed in Table I.

The CW RTM with a maximum final energy between 100 and 200 MeV2- 6

differs in some respects from the more fully studied pulsed RTM. 7
-

11 (For a
complete survey of different RTM projects see Ref. 12.) The principal differences
are accounted for by the low intensity of the linac accelerating field (1
1.5 MeV/m), which necessitates, first, a large separation between the bending
magnets and, second, the 5-15 MeV injection system.

The high average beam current of the CW RTM requires that the particle
losses in the acceleration process be minimized. This minimization is accompl
ished by properly matching the injected beam emittance and the RTM accept
ance. When an output beam with an energy spread of ±10-4 is needed, fhe
requirements for matching the injected-beam parameters to the RTM separatrix
are even more stringent. At present these problems are given little attention in
the literature.
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FIGURE 1 The CW racetrack microtron under construction at the Institute of Nuclear Physics,
Moscow State University; 1--electron gun; 2-magnetic lens; 3-collimator; 4--rf deflection cavity;
5-bunching resonator; 6-graded {3 section; 7-quadrupole singlets and doublets; 8-rf beam
monitor; 9,1Q-linacs with {3 = 1; II-sector bending magnet; 12-180° bending magnets; 12a
opposite poles; 13-main linac with {3 = 1; 14-ejection chamber; IS-vertical and horizontal steerers.

In most cases (see, for example, Refs. 2 and 13), phase motion is analyzed
using equations of phase and energy oscillations with respect to the phase and
energy of a hypothetical particle with velocity equal to that of light. In this paper
a different approach, based on the notion of an asymptotically synchronous
particle, is suggested. This approach simplifies the choice of initial conditions in
order to obtain a beam with preset output properties. 14

TABLE I

Parameters of the Racetrack Microtron at the Institute of Nuclear Physics,
Moscow State University

Injection energy, Einj (MeV)
Final energy, E output (MeV)
Energy gain, tJ.E (MeV)
Number of orbits, N
Operating frequency, f (MHz)
Synchronous phase, Ws (deg)
Incremental number of wavelengths per orbit, v
Magnetic field value, Bo (T)
Diameter of last orbit, d25 (em)
Average beam current, I (f..lA)
Energy spread, tJ.E / E
Transverse emittance of the output beam, fT(n mm-mrad)
Accelerating structure length, L(m)
Effective shunt impedance, Re (MQ/m)
Total rf power including the injection system, P (kW)

7
118
4.43
25
2450
106
1
0.76
105
100
10-3-10-4

0.05
4.16
75
175
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2. EQUATIONS OF PHASE MOTION IN THE RACETRACK
MICROTRON
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(la)

The behavior of the phase and energy of particles during acceleration in a RTM
with a standing-wave linear accelerator obeys the equations

() ( ) 2Jr [~JA/4 dz. 5t(n - 1) - LJ
~n=~n-l+- ~ +----

A m=1-A/4f3':-1(Z) f3n-l '

E(n) = E(n -1) + em~l f::4 ~m(z) cos [2; f::4f3:~~~')+ 1jJ(n -1)] dZ. (lb)

Here ~(n) and E(n) are, respectively, the particle phase with respect to the rf
field phase and the particle output energy at the start of the nth orbit, where
n = 1, 2, ... ,N, and N is the total number of orbits. The first expression in
brackets accounts for the phase slip in the linac and the second expression in
brackets [Eq. (la)] accounts for the phase slip, in the bending magnets, the drift
space, and the fringing fields of the magnets, L is the linac length containing M
cells (L = MA/2), Ais the rf-field wavelength in free space, 5t(n) is the total orbit
length, and f3':(z), f3n is the relative electron velocity. The second term in the
right-hand side of Eq. (lb) accounts for the energy gain per turn. ~m (z) is the
electric-field amplitude on the mth cell axis, and ~(O) and E(O) correspond to the
phase and energy of an injected particle, respectively. With the chosen phase
reference point, the maximum energy gain of an ultrarelativistic electron is
obtained for 'ljJ(n) = Jr/2.

The orbit length of a particle moving parallel to the linac axis can be
represented as

5t(n) = 2S + 2nR(n) + dSM(n), (2)

where S is the distance between the edges of ideal bending magnets (magnets
without fringing field), R(n) is the turn radius of a particle in the magnet, and
dSM(n) is the difference in the orbit length between the real and ideal magnets.

In the ultrarelativistic limit (f3n = 1), one can introduce the notion of a
synchronous particle with the condition of resonance motion:

2S + 2nR(n) + dSM = A[,u + v(n - 1], (3)

where d~ = limJ3n~l dSM(n), and v is the incremental number of wavelengths
per turn. In this limit the relation of the synchronous energy gain dEs and the
magnetic-field induction Bo in the bending magnets is

where, for zero beam current,

(4)

dEs = YPReL cos ('ljJs - nI2), (5)
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where tPs is the synchronous phase, P is the dissipated power in the linac, and Re
is the effective shunt impedance.

In this approximation Eqs. (la) and (lb) lead to the equations of phase
oscillations of a classical microtron (CM) whose basic properties are well
known. 1S

-
17 The validity of the approximation fin = 1 is determined mainly by the

relation of particle velocity and the distance between magnets. That is, the phase
shift of a particle in the drift space ~CPD must be much less than the width of the
CM phase-stable region, specifically for 1/Js at the center of linear stability band

A () 2S(1 - fin) 360° °
uqJv n = f3n •T::S 1 · (6)

For the CW RTM at 100-200 MeV, Eq. (6) starts to be fulfilled at 40-50 MeV;
i.e., the results of the phase-motion analysis for the CM are acceptable for most
orbits. However, in the first few orbits the phase shift is tens of degrees, the
ultrarelativistic approximation is inapplicable, and synchronous particles, in the
strict sense, are nonexistent.

Let an asymptotically synchronous particle in the RTM be a particle whose
phase behavior satisfies the condition

(7)

The properties of equations of the eM phase oscillations and the Liouville
theorem suggest the existence of the single trajectory on the phase plane with the
initial point 1JJs (0), Es (0) satisfying Eq. (7). To search for the phase path of the
synchronous particle 1JJs (n), Es (n), n = 0, ... ,N, the following procedure is
suggested:

1. The parameters ~Es, Bo, 1JJs, and v are chosen in the ultrarelativistic limit.
The maximum width of the phase-stable region with the inclusion of nonlinear
resonance12

,17,18 is provided by the following values; v = 1, tPs ~ 106°. The terms
~Es and Bo are determined by Eqs. (5) and (4), respectively.

2. The free parameter that enables one to match the Es(O) value of the
synchronous-phase path and the injected-beam energy is the separation between
magnets S. The functional connection of Es(O) and S is given by Eq. (7) and Eqs.
(Ia) and (Ib). The search for the phase path satisfying Eq. (7) at a sufficiently
large yet finite number of orbits, N, can be reduced to the search for the
minimum value of b1JJN = ;P(N) - 1JJs, depending on the values of 1jJ(O) and S for
a given Es(O), by means of a numerical solution of Eqs. (Ia) and (lb). The bar
above 1jJ(N) means that 1jJ(N) is averaged over the period of phase oscillations.

This procedure can also be used when tuning the real accelerator with the
signal of the rf phase monitor located on the linac axis (Fig. 1). In certain cases it
is desirable to vary the energy of an injected beam rather than the distance
between magnets.
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3. CALCULATIONS OF THE RTM SEPARATRIX
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The bunches of particles injected into the RTM occupy the non-vanishing area on
the phase plane (they have a nonzero longitudinal emittance EL ). In this
connection the analysis of phase motion in the RTM has the following three
goals: (1) calculating the separatrix and optimizing the longitudinal acceptance;
(2) matching the center of the beam phase-space distribution to the phase-plane
point Es(O), 1J's(O); (3) matching the axial inclination of the beam phase-space
distribution with the RTM separatrix.

After solving these problems, we formulate the requirements for the injected
beam in order to minimize losses in the acceleration process at large EL' minimize
the nonlinear distortions and attain high monochromaticity at small EL' and
obtain tolerances on different RTM parameters.

We have developed a numerical-analysis program of RTM phase motion that
enables one to obtain the phase path of a synchronous particle for a given
injection energy, to determine the form and location of the separatrix, to obtain
the longitudinal acceptance, and to calculate the injected-beam parameters
needed to obtain a preset monochromaticity at the RTM output. The beam
phase-space distribution given below was obtained as a result of the analysis of
phase trajectories of a large ensemble of particles (about 104

). To speed up the
calculation, the preliminary integration of phase-motion equations in the linac
and in the fringing fields of the bending magnets has, been carried out on the
detailed mesh with variable step in energy-phase plane. The particle energy and
phase values at the outlet of the elements were determined with the help of
second-order interpolation of the entrance values.

Calculations were carried out on a 32-bit computer with double precision.
According to our estimates, the relative accuracy of energy and phase determina
tion at the end of the 25th orbit is 10-5-10-6 and 0.1°-0.01°, respectively. The
calculation results presented below are obtained from the CW RTM at the
Institute of Nuclear Physics, Moscow State University; the parameters of this
RTM are listed in Table I. At the same time these results are general in nature
and can be used to evaluate other projects.

In Fig. 2 the separatrix computations for the RTM with 25 orbits are
illustrated. The simulation conditions and the acceptance values are listed in
Table II. Figures 2A through 2C plots the separatrix versus injected energy. The
fringing field of the bending magnets was compensated for by the reversed field in
order to obtain an infinite-edge focal length in the vertical plane. 19 The
reversed-field maximum was ---7 cm from the physical edge of the magnet, its
value being 30% of the main field. The magnet-gap width was 6 cm. The
acceptances (;) for injected energies of 5,7, and 9 MeV are ; ~ 6.2/Jr MeV· deg,
;~ 8.8/Jr MeV· deg, and ; ~ 9.5/Jr MeV· deg, respectively. Figure 2D presents
the eM separatrix ; ~ 10.7/Jr MeV· deg. As can be seen, the RTM acceptance is
quite large. As the injected energy decreases, the acceptance gets smaller, and
theRTM separatrix departs from the CM separatrix. At a certain injected energy
(in this case E(O) ~ 3.5 MeV), the acceptance goes to zero. Motion without phase
correction becomes impossible.



FIGURE 2 Form and value of the acceptance of the 25-orbit RTM plotted versus different
parameters from Table II.

The role of the fringing fields of the bending magnets is demonstrated in Figs.
2E and 2F, where the RTM separatrix at an injected energy of 7 MeV is given for
the bending magnet without compensation of the fringing field (; ~
6.4n MeV· deg) and for the ideal magnet ; ~9.3IJr MeV· deg). Figure 2G shows
the RTM separatrix with a 4.4-m distance between the magnets. In this case
; ~ 91n MeV· deg.

The particles falling inside the limits of the separatrix domain must travel
through all N orbits to have the RTM final-energy spread obtainable in a first
approximation by the formula

8.EIE ~ ±tg (1jJs - n/2) 8.'ljJIN, (8)
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TABLE II

The Separatrix Area as a Function of Different Parameters of the RTM after 25 Orbits

Path-length
Distance Character of the difference in

Injection between drop of the fringing magnet Separatrix
Fig. 2 energy magnets field of the from the ideal area

reference (MeV) (m) bending magnets (~SM' mm) (MeV'deg)

A 5 6 Compensation of -10.5 x 2 6.2
B 7 6 fringing field -10.5 x 2 8.8
C 9 6 by opposite pole -10.5 x 2 9.5
D 8.2 0 CM 0 10.7
E 7 6 Without compensate 39.9 x 2 6.4
F 7 6 Ideal magnet 0 9.3
G 7 4.4 With compensation -10.5 x 2 9.0
H 7 6 With compensation -10.5 x 2 4.4

~B/B=10-3
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(9)

where ~ tjJ is the half width of phase-stable region. For tjJs = 106°, N = 25,
~EIE~±3 10-3

, to attain ~EIE~±10-4, the particles should be within
~ tjJ :5 ±0.5°, provided that the center of the beam phase-space distribution
coincides with the coordinates of a synchronous trajectory.

To properly choose the initial conditions to obtain a specified value of ~EIE at
the RTM output, we have simulated the separatrix and determined the average
deviation of phases and energies over all orbits from the synchronous values

1 N

c5W = N~1 [w(n) - Ws(n)],

1 N

DE = - L [E(n) - Es(n)].
N n=l

Figure 3A presents the levels of equal ~E in the coordinate axes 1/J(0), E(O) for
an injection energy of 7 MeV. As can be seen, to obtain high monochromaticity
the beam phase-space distribution should be nearly elliptical.

Representing the equation of the envelope of beam phase-space distributions as

y ~1/J2 + 2£1' ~E ~1/J + f3 ~E2 = E, (10)

where E is the beam emittance, and working from Fig. 3A, we have determined
the parameters of an ellipse needed to obtain a given ~E value. These parameters
are listed in Table III.

The maximum deviation of particle energy from the synchronous value on any
orbit will not be greater than nl2 . ~E, because the oscillation amplitude does not
vary. Thus, in order to obtain the ±10-4 monochromaticity of the final beam, the
longitudinal emittance should be E:::::: 5 keV· deg, i.e., 0.2% of the acceptance,
and the parameters of the ellipse formed by the RTM injection system should
correspond to the parameters listed in Table III. For comparison, Fig. 3B gives
the analogous results for the classical microtron.
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FIGURE 3 Levels of equal deviations of energy 6E from the synchronous values for the
computation conditions listed in Table III.

4. THE PERTURBING FACTORS

In this section we consider some factors affecting the phase motion in the RTM.
One of the essential factors is the transverse motion of particles in the RTM. The
orbit length of a particle moving at an angle O(n) to the linac axis differs from
that of a particle with O(n) = 0 by

~::£(n) = 2R(n) · O(n) + S · 02(n). (11)

The total phase shift of this particle after N orbits depends on the transverse
emittance of a beam and the· focusing scheme. With the focusing elements on the
RTM common axis and the transverse emittance :::::::0.5 mm mrad at 7 MeV, the
phase shift after 25 orbits is of the order of 10

, which corresponds to
~E/E ::::::: ±2 · 10-4

• With the focusing elements on the return orbits, the phase
shift is 100

; besides, resonance phenomena are possible here when the phase-
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TABLE III

Parameters of Ellipses Needed to Obtain a Given Average-Energy-Deviation Value from Synchro-
nous Values

Parameters of ellipses

Fig. 3 Computation No. of c5(E), emittance, E

reference parameters ellipse (keV) (keV· deg) a f3 y

Racetrack
microtron with 1 10 6.18 0.403 0.057 20.40

A 25 orbits, 2 20 38.8 0.845 0.071 24.03

S=6m 3 30 87.7 0.890 0.079 22.80

Classical 1 10 4.59 -0.60 0.055 24.91

B microtron with 2 20 37.0 -1.38 0.093 31.10

25 orbits 3 30 110.8 -1.47 0.088 35.80

Racetrack
microtron with 1 10 0.30 1.477 0.052 61.2

C
25 orbits, 2 20 27.75 9.204 0.278 308.3

AB/B = 10-3 3 30 72.45 5.658 0.164 201.3

oscillation period is close to that of betatron oscillations. The resonance
phenomena lead to an unlimited growth of betatron and phase-oscillation
amplitudes.2o,21

Thus, the results of the phase-motion analysis for particles on the central
trajectory hold true for weak focusing. When the quadrupole lenses are on the
return orbits, the longitudinal and transverse motions must be analyzed jointly.

One more factor contributing to the connection of longitudinal and transverse
motion is the radial dependence of the accelerating field. For an accelerating
structure with a 10-mm beam aperture, the difference in the effective shunt
impedance, which determines the energy gain of a particle in the central
trajectory and a particle shifted by 3 mm with respect to the axis, is dRe / R e ~

10-2
•
14 If the off-axis shift is retained in the acceleration process, the difference in

Re at a given magnetic field is equivalent to the change in the synchronous phase.
This results in phase oscillations of the particles with E(O) = Es(O), tjJ(O) = tjJs(O)
at the instant of injection, which leads to spectrum broadening at the RTM
output:

/).E/ E = ± tg (1J1s; .71:/2) . ~:e= ±6 x 10-5,

e
(12)

The accelerating-field instability in the linac can also be characterized by the
equivalent change of the synchronous phase but only if the transient time
substantially exceeds the time of particle motion through all orbits (for N = 25,
t == 1 nsec). In this case the instability should be less than ±1% in order that
dE /E ~ ±10-4 at N = 25. The phase shift of a particle per turn due to
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inhomogeneity of the field of the bending magnets is2

~B 2:rrln
~1jJn~B·T' (13)

where In is the orbit length in the magnetic field.
We have calculated the separatrix when the phase shifts due to field

inhomogeneity are the same for all particles within one bunch and are summed
randomly over orbits. The results for ~B1B = ±10-3 are shown in Fig. 2H
(; == 4.41 JT MeV· deg). It should be emphasized that the magnetic-field in
homogeneity excludes the fulfilment of Eq. (7): the synchronous particle
oscillates with a large amplitude and, thus, leaves the modified-separatrix
domain. Figure 3C illustrates the separatrix simulation and shows the levels of
equal deviation in energy DE with respect to the particle that was at the center of
the modified separatrix on the last orbit. The resulting phase-space distribution
brings about more stringent requirements to the longitudinal emittance for
~E1E = ±10-4

• The choice of initial conditions becomes more complicated.
The large oscillation amplitude of the center of the beam phase space leads to

the irregularity of the RTM orbital spacing,t° which makes it difficult to place
quadrupoles on the return orbits.

As for the time behavior of the magnetic field, the requirement that the
magnetic field be stable is directly connected with the requirement that the beam
be monochromatic to obtain ~EIE = ±10-4

, ~BIB = ±10-4
•

5. CONCLUSIONS

The main results of the present work are:

1. An approach to RTM phase-motion analysis is proposed. The approach is
based on the notion of an asymptotically synchronous particle.

2. The RTM separatrix is studied as a function of injection energy and fringing
field of the bending magnets.

3. The preferred initial conditions for providing the beam with a given mono
chromaticity at the RTM output are suggested.

4. Different factors affecting the RTM beam monochromaticity are estimated.
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