2,027 research outputs found

    What is the true charge transfer gap in parent insulating cuprates?

    Get PDF
    A large body of experimental data point towards a charge transfer instability of parent insulating cuprates to be their unique property. We argue that the true charge transfer gap in these compounds is as small as 0.4-0.5\,eV rather than 1.5-2.0\,eV as usually derived from the optical gap measurements. In fact we deal with a competition of the conventional (3d9^9) ground state and a charge transfer (CT) state with formation of electron-hole dimers which evolves under doping to an unconventional bosonic system. Our conjecture does provide an unified standpoint on the main experimental findings for parent cuprates including linear and nonlinear optical, Raman, photoemission, photoabsorption, and transport properties anyhow related with the CT excitations. In addition we suggest a scenario for the evolution of the CuO2_2 planes in the CT unstable cuprates under a nonisovalent doping.Comment: 13 pages, 5 figures, submitted to PR

    Triaxial projected shell model approach

    Get PDF
    The projected shell model analysis is carried out using the triaxial Nilsson+BCS basis. It is demonstrated that, for an accurate description of the moments of inertia in the transitional region, it is necessary to take the triaxiality into account and perform the three-dimensional angular-momentum projection from the triaxial Nilsson+BCS intrinsic wavefunction.Comment: 9 pages, 2 figure

    Control of scroll wave turbulence using resonant perturbations

    Get PDF
    Turbulence of scroll waves is a sort of spatio-temporal chaos that exists in three-dimensional excitable media. Cardiac tissue and the Belousov-Zhabotinsky reaction are examples of such media. In cardiac tissue, chaotic behaviour is believed to underlie fibrillation which, without intervention, precedes cardiac death. In this study we investigate suppression of the turbulence using stimulation of two different types, "modulation of excitability" and "extra transmembrane current". With cardiac defibrillation in mind, we used a single pulse as well as repetitive extra current with both constant and feedback controlled frequency. We show that turbulence can be terminated using either a resonant modulation of excitability or a resonant extra current. The turbulence is terminated with much higher probability using a resonant frequency perturbation than a non-resonant one. Suppression of the turbulence using a resonant frequency is up to fifty times faster than using a non-resonant frequency, in both the modulation of excitability and the extra current modes. We also demonstrate that resonant perturbation requires strength one order of magnitude lower than that of a single pulse, which is currently used in clinical practice to terminate cardiac fibrillation. Our results provide a robust method of controlling complex chaotic spatio-temporal processes. Resonant drift of spiral waves has been studied extensively in two dimensions, however, these results show for the first time that it also works in three dimensions, despite the complex nature of the scroll wave turbulence.Comment: 13 pages, 12 figures, submitted to Phys Rev E 2008/06/13. Last version: 2008/09/18, after revie

    Semi-analytical Solution of Dirac equation in Schwarzschild Geometry

    Get PDF
    Separation of the Dirac equation in the spacetime around a Kerr black hole into radial and angular coordinates was done by Chandrasekhar in 1976. In the present paper, we solve the radial equations in a Schwarzschild geometry semi-analytically using Wentzel-Kramers-Brillouin approximation (in short WKB) method. Among other things, we present analytical expression of the instantaneous reflection and transmission coefficients and the radial wave functions of the Dirac particles. Complete physical parameter space was divided into two parts depending on the height of the potential well and energy of the incoming waves. We show the general solution for these two regions. We also solve the equations by a Quantum Mechanical approach, in which the potential is approximated by a series of steps and found that these two solutions agree. We compare solutions of different initial parameters and show how the properties of the scattered wave depend on these parameters.Comment: RevTex, 11 Latex pages and 12 Figures ; Classical and Quantum Gravity (in Press) (1999

    Phonon Coherence and New Set of Sidebands in Phonon-Assisted Photoluminescence

    Get PDF
    We investigate excitonic polaron states comprising a local exciton and phonons in the longitudinal optical (LO) mode by solving the Schr\"{o}dinger equation. We derive an exact expression for the ground state (GS), which includes multi-phonon components with coefficients satisfying the Huang-Rhys factors. The recombination of GS and excited polaron states gives one set of sidebands in photoluminescence (PL): the multi-phonon components in the GS produce the Stokes lines and the zero-phonon components in the excited states produce the anti-Stokes lines. By introducing the mixing of the LO mode and environal phonon modes, the exciton will also couple with the latter, and the resultant polaron states result in another set of phonon sidebands. This set has a zero-phonon line higher and wider than that of the first set due to the tremendous number of the environal modes. The energy spacing between the zero-phonon lines of the first and second sets is proved to be the binding energy of the GS state. The common exciton origin of these two sets can be further verified by a characteristic Fano lineshape induced by the coherence in the mixing of the LO and the environal modes.Comment: 5 pages, 3 figures 1 figure (fig. 1) replaced 1 figure (fig. 2) remove

    A Study Of A New Class Of Discrete Nonlinear Schroedinger Equations

    Full text link
    A new class of 1D discrete nonlinear Schro¨{\ddot{\rm{o}}}dinger Hamiltonians with tunable nonlinerities is introduced, which includes the integrable Ablowitz-Ladik system as a limit. A new subset of equations, which are derived from these Hamiltonians using a generalized definition of Poisson brackets, and collectively refered to as the N-AL equation, is studied. The symmetry properties of the equation are discussed. These equations are shown to possess propagating localized solutions, having the continuous translational symmetry of the one-soliton solution of the Ablowitz-Ladik nonlinear Schro¨{\ddot{\rm{o}}}dinger equation. The N-AL systems are shown to be suitable to study the combined effect of the dynamical imbalance of nonlinearity and dispersion and the Peierls-Nabarro potential, arising from the lattice discreteness, on the propagating solitary wave like profiles. A perturbative analysis shows that the N-AL systems can have discrete breather solutions, due to the presence of saddle center bifurcations in phase portraits. The unstaggered localized states are shown to have positive effective mass. On the other hand, large width but small amplitude staggered localized states have negative effective mass. The collison dynamics of two colliding solitary wave profiles are studied numerically. Notwithstanding colliding solitary wave profiles are seen to exhibit nontrivial nonsolitonic interactions, certain universal features are observed in the collison dynamics. Future scopes of this work and possible applications of the N-AL systems are discussed.Comment: 17 pages, 15 figures, revtex4, xmgr, gn

    Strong exciton-plasmon coupling in semiconducting carbon nanotubes

    Full text link
    We study theoretically the interactions of excitonic states with surface electromagnetic modes of small-diameter (~1 nm) semiconducting single-walled carbon nanotubes. We show that these interactions can result in strong exciton-surface-plasmon coupling. The exciton absorption line shape exhibits Rabi splitting ~0.1 eV as the exciton energy is tuned to the nearest interband surface plasmon resonance of the nanotube. We also show that the quantum confined Stark effect may be used as a tool to control the exciton binding energy and the nanotube band gap in carbon nanotubes in order, e.g., to bring the exciton total energy in resonance with the nearest interband plasmon mode. The exciton-plasmon Rabi splitting we predict here for an individual carbon nanotube is close in its magnitude to that previously reported for hybrid plasmonic nanostructures artificially fabricated of organic semiconductors on metallic films. We expect this effect to open up paths to new tunable optoelectronic device applications of semiconducting carbon nanotubes.Comment: 22 pages, 8 figures, accepted for PR

    Soft triaxial rotor in the vicinity of γ=π/6\gamma=\pi/6 and its extensions

    Full text link
    The collective Bohr hamiltonian is solved for the soft triaxial rotor around γ0=π/6\gamma_0=\pi/6 with a displaced harmonic oscillator potential in γ\gamma and a Kratzer-like potential in β\beta. The properties of the spectrum are outlined and a generalization for the more general triaxial case with 0<γ<π/60<\gamma<\pi/6 is proposed.Comment: Contribution to ENAM '04 conference. 2 pages, 2 figur
    corecore