25,096 research outputs found

    What do gas-rich galaxies actually tell us about modified Newtonian dynamics?

    Full text link
    It has recently been claimed that measurements of the baryonic Tully-Fisher relation (BTFR), a power-law relationship between the observed baryonic masses and outer rotation velocities of galaxies, support the predictions of modified Newtonian dynamics for the slope and scatter in the relation, while challenging the cold dark matter (CDM) paradigm. We investigate these claims, and find that: 1) the scatter in the data used to determine the BTFR is in conflict with observational uncertainties on the data; 2) these data do not make strong distinctions regarding the best-fit BTFR parameters; 3) the literature contains a wide variety of measurements of the BTFR, many of which are discrepant with the recent results; and 4) the claimed CDM "prediction" for the BTFR is a gross oversimplification of the complex galaxy-scale physics involved. We conclude that the BTFR is currently untrustworthy as a test of CDM.Comment: 5 pages, 2 figures; minor revisions to match published versio

    The Shape of Dark Matter Haloes IV. The Structure of Stellar Discs in Edge-on Galaxies

    Get PDF
    We present optical and near-infrared archival observations of eight edge-on galaxies. These observations are used to model the stellar content of each galaxy using the FitSKIRT software package. Using FitSKIRT, we can self-consistently model a galaxy in each band simultaneously while treating for dust. This allows us to accurately measure both the scale length and scale height of the stellar disc, plus the shape parameters of the bulge. By combining this data with the previously reported integrated magnitudes of each galaxy, we can infer their true luminosities. We have successfully modelled seven out of the eight galaxies in our sample. We find that stellar discs can be modelled correctly, but have not been able to model the stellar bulge reliably. Our sample consists for the most part of slow rotating galaxies, and we find that the average dust layer is much thicker than what is reported for faster rotating galaxies.Comment: Accepted for publication by Monthly Notices RAS. Hi-res. version available at www.astro.rug.nl/~vdkruit/Petersetal-IV.pd

    The Shape of Dark Matter Haloes II. The Galactus HI Modelling & Fitting Tool

    Get PDF
    We present a new HI modelling tool called \textsc{Galactus}. The program has been designed to perform automated fits of disc-galaxy models to observations. It includes a treatment for the self-absorption of the gas. The software has been released into the public domain. We describe the design philosophy and inner workings of the program. After this, we model the face-on galaxy NGC2403, using both self-absorption and optically thin models, showing that self-absorption occurs even in face-on galaxies. It is shown that the maximum surface brightness plateaus seen in Paper I of this series are indeed signs of self-absorption. The apparent HI mass of an edge-on galaxy can be drastically lower compared to that same galaxy seen face-on. The Tully-Fisher relation is found to be relatively free from self-absorption issues.Comment: Accepted for publication by Monthly Notices RAS. Hi-res. version available at www.astro.rug.nl/~vdkruit/Petersetal-II.pd

    The planetary nebula population in the halo of M87

    Full text link
    We investigate the diffuse light in the outer regions of the nearby elliptical galaxy M87 in the Virgo cluster, using planetary nebulas (PNs) as tracers. The surveyed areas (0.43 squared degrees) cover M87 up to a radial distance of 150 kpc, in the ransition region between galaxy halo and intracluster light (ICL). All PNs are identified through the on-off band technique using automatic selection criteria based on the distribution of the detected sources in the colour-magnitude diagram and the properties of their point-spread function. We extract a catalogue of 688 objects down to m_5007=28.4, with an estimated residual contamination from foreground stars and background Lyalpha galaxies, which amounts to ~35% of the sample. This is one of the largest extragalactic PN samples in number of candidates, magnitude depth, and radial extent, which allows us to carry out an unprecedented photometric study of the PN population in the outer regions of M87. We find that the logarithmic density profile of the PN distribution is shallower than the surface brightness profile at large radii. This behaviour is consistent with the superposition of two components associated with the halo of M87 and with the ICL, which have different luminosity specific PN numbers, the ICL contributing three times more PNs per unit light. Because of the depth of this survey we are also able to study the shape of the PN luminosity function (PNLF) in the outer regions of M87. We find a slope for the PNLF that is steeper at fainter magnitudes than the standard analytical PNLF formula and adopt a generalised model that treats the slope as a free parameter. Comparing the PNLF of M87 and the M31 bulge, both normalised by the sampled luminosity, the M87 PNLF contains fewer bright PNs and has a steeper slope towards fainter magnitudes.Comment: 16 pages, 13 figures, 5 tables, accepted for publication in A&

    Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method.

    Get PDF
    Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is Si2H6 which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets

    Probable Gravitational Microlensing towards the Galatic Bulge

    Full text link
    The MACHO project carries out regular photometric monitoring of millions of stars in the Magellanic Clouds and Galactic Bulge, to search for very rare gravitational microlensing events due to compact objects in the galactic halo and disk. A preliminary analysis of one field in the Galactic Bulge, containing {430,000\sim430,000} stars observed for 190 days, reveals four stars which show clear evidence for brightenings which are time-symmetric, achromatic in our two passbands, and have shapes consistent with gravitational microlensing. This is significantly higher than the 1\sim 1 event expected from microlensing by known stars in the disk. If all four events are due to microlensing, a 95\% confidence lower limit on the optical depth towards our bulge field is 1.3×1061.3 \times 10^{-6}, and a ``best fit" value is τ1.6×106/ϵ\tau \approx 1.6 \times 10^{-6}/\epsilon,where ϵ\epsilon is the detection efficiency of the experiment, and ϵ<0.4\epsilon < 0.4. If the true optical depth is close to the ``best fit" value, possible explanations include a ``maximal" disk which accounts for most of the galactic circular velocity at the solar radius, a halo which is centrally concentrated, or bulge-bulge microlensing.Comment: submitted to Astrophysical Journal Letters, 10 pages text as uuencoded compressed PostScript, 5 figures and paper also available via anonymous ftp from merlin.anu.edu.au in /pub/kcf/mach

    A Normal Stellar Disk in the Galaxy Malin 1

    Get PDF
    Since its discovery, Malin 1 has been considered the prototype and most extreme example of the class of giant low surface brightness disk galaxies. Examination of an archival Hubble Space Telescope I-band image reveals that Malin 1 contains a normal stellar disk that was not previously recognized, having a central I-band surface brightness of mu_0 = 20.1 mag arcsec^-2 and a scale length of 4.8 kpc. Out to a radius of ~10 kpc, the structure of Malin 1 is that of a typical SB0/a galaxy. The remarkably extended, faint outer structure detected out to r~100 kpc appears to be a photometrically distinct component and not a simple extension of the inner disk. In terms of its disk scale length and central surface brightness, Malin 1 was originally found to be a very remote outlier relative to all other known disk galaxies. The presence of a disk of normal size and surface brightness in Malin 1 suggests that such extreme outliers in disk properties probably do not exist, but underscores the importance of the extended outer disk regions for a full understanding of the structure and formation of spiral galaxies.Comment: 13 pages, 7 figures. To appear in AJ. Typographical error correcte

    XMM-Newton Archival Study of the ULX Population in Nearby Galaxies

    Full text link
    We present the results of an archival XMM-Newton study of the bright X-ray point sources (L_X > 10^38 erg/s) in 32 nearby galaxies. From our list of approximately 100 point sources, we attempt to determine if there is a low-state counterpart to the Ultraluminous X-ray (ULX) population, searching for a soft-hard state dichotomy similar to that known for Galactic X-ray binaries and testing the specific predictions of the IMBH hypothesis. To this end, we searched for "low-state" objects, which we defined as objects within our sample which had a spectrum well fit by a simple absorbed power law, and "high-state" objects, which we defined as objects better fit by a combined blackbody and a power law. Assuming that ``low-state'' objects accrete at approximately 10% of the Eddington luminosity (Done & Gierlinski 2003) and that "high-state" objects accrete near the Eddington luminosity we further divided our sample of sources into low and high state ULX sources. We classify 16 sources as low-state ULXs and 26 objects as high-state ULXs. As in Galactic black hole systems, the spectral indices, Gamma, of the low-state objects, as well as the luminosities, tend to be lower than those of the high-state objects. The observed range of blackbody temperatures for the high state is 0.1-1 keV, with the most luminous systems tending toward the lowest temperatures. We therefore divide our high-state ULXs into candidate IMBHs (with blackbody temperatures of approximately 0.1 keV) and candidate stellar mass BHs (with blackbody temperatures of approximately 1.0 keV). A subset of the candidate stellar mass BHs have spectra that are well-fit by a Comptonization model, a property similar of Galactic BHs radiating in the "very-high" state near the Eddington limit.Comment: 54 pages, submitted to ApJ (March 2005), accepted (May 2006); changes to organization of pape
    corecore