29,132 research outputs found
Pressure and current balance conditions during electron beam injections from spacecraft
Electrostatic charging level of a conducting surface in response to injections of electron beams into space plasma is investigated by means of one-dimensional Vlasov code. Injections of Maxwellian beams into a vacuum shows that the surface can charge up to an electric potential phi sub s greater than W sub b, where W sub b is the average electron beam energy. Since Maxwellian beams have extended trails with electrons having energies greater than W sub b, it is difficult to quantify the charging level in terms of the energies of the injected electrons. In order to quantitatively understand the charging in excess of W sub b, simulations were carried out for water-bag types of beam with velocity distribution functions described by f(V) = A for V sub min approx. less than V approx. less than V sub max and f(V) = O otherwise, where A is a constant making the normalized beam density unity. It is found that V sub max does not directly determine the charging level. The pressure distribution in the electron sheath determines the electric field distribution near the surface. The electric field in turn determines the electrostatic potential of the vehicle. The pressure distribution is determined by the beam parameters such as the average beam velocity and the velocity spread of the beam
Enhanced toluene removal using granular activated carbon and a yeast strain candida tropicalis in bubble-column bioreactors
The yeast strain Candida tropicalis was used for the biodegradation of gaseous toluene. Toluene was effectively treated by a liquid culture of C. tropicalis in abubble-column bioreactor, and the tolueneremoval efficiency increased with decreasing gas flow rate. However, toluene mass transfer from the gas-to-liquid phase was a major limitation for the uptake of toluene by C. tropicalis. The tolueneremoval efficiency was enhanced when granularactivatedcarbon (GAC) was added as a fluidized material. The GAC fluidized bioreactor demonstrated tolueneremoval efficiencies ranging from 50 to 82% when the inlet toluene loading was varied between 13.1 and 26.9 g/m3/h. The yield value of C. tropicalis ranged from 0.11 to 0.21 g-biomass/g-toluene, which was substantially lower than yield values for bacteria reported in the literature. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m3/h at atoluene loading of 291 g/m3/h. Transient loading experiments revealed that approximately 50% of the toluene introduced was initially adsorbed onto the GAC during an increased loading period, and then slowly desorbed and became available to the yeast culture. Hence, the fluidized GAC mediated in improving the gas-to-liquid mass transfer of toluene, resulting in a high tolueneremoval capacity. Consequently, the GAC bubble-column bioreactor using the culture of C. tropicalis can be successfully applied for the removal of gaseous toluene
The design of an Fe-12Mn-O.2Ti alloy steel for low temperature use
An investigation was made to improve the low temperature mechanical properties of Fe-8 approximately 12% Mn-O 2Ti alloy steels. A two-phase(alpha + gamma) tempering in combination with cold working or hot working was identified as an effective treatment. A potential application as a Ni-free cryogenic steel was shown for this alloy. It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated martensitic structure and absence of epsilon phase. A significant reduction of the ductile-brittle transition temperature was obtained in this alloy. The nature and origin of brittle fracture in Fe-Mn alloys were also investigated. Two embrittling regions were found in a cooling curve of an Fe-12Mn-O 2Ti steel which was shown to be responsible for intergranular fracture. Auger electron spectroscopy identified no segregation during solution-annealing treatment. Avoiding the embrittling zones by controlled cooling led to a high cryogenic toughness in a solution-annealed condition
Attraction of Culex mosquitoes to aldehydes from human emanations.
Anecdotes related to preferential mosquito bites are very common, but to date there is no complete explanation as to why one out of two people systematically receives more mosquito bites than the other when both are equally accessible. Here we tested the hypothesis that two constituents of skin emanations, 6-methyl-5-heptan-2-one (6-MHO) and geranylacetone (GA), are natural repellents and may account for differential attraction in different ratios. We studied skin emanations from two human subjects, confirmed in behavioral assays that female southern house mosquitoes are significantly more attracted to subject A (attractant) than to subject N (non-attractant), and tested their 6-MHO/GA ratios in a dual-choice olfactometer. Although repelling at high doses, 6-MHO/GA mixtures were not active at the levels emitted by human skin. We found, however, differential attraction elicited by the aldehydes in the ratios produced by subjects A and N. When tested in a dose commensurate with the level released from human skin and in the ratio produced by subject A, the aldehyde mixture significantly attracted mosquitoes. By contrast, an aldehyde mixture at the same ratio released by subject N did not attract mosquitoes. We, therefore, hypothesized that aldehydes may play a role in the commonly observed differential attraction
Transport properties of diluted magnetic semiconductors: Dynamical mean field theory and Boltzmann theory
The transport properties of diluted magnetic semiconductors (DMS) are
calculated using dynamical mean field theory (DMFT) and Boltzmann transport
theory. Within DMFT we study the density of states and the dc-resistivity,
which are strongly parameter dependent such as temperature, doping, density of
the carriers, and the strength of the carrier-local impurity spin exchange
coupling. Characteristic qualitative features are found distinguishing weak,
intermediate, and strong carrier-spin coupling and allowing quantitative
determination of important parameters defining the underlying ferromagnetic
mechanism. We find that spin-disorder scattering, formation of bound state, and
the population of the minority spin band are all operational in DMFT in
different parameter range. We also develop a complementary Boltzmann transport
theory for scattering by screened ionized impurities. The difference in the
screening properties between paramagnetic () and ferromagnetic ()
states gives rise to the temperature dependence (increase or decrease) of
resistivity, depending on the carrier density, as the system goes from the
paramagnetic phase to the ferromagnetic phase. The metallic behavior below
for optimally doped DMS samples can be explained in the Boltzmann theory
by temperature dependent screening and thermal change of carrier spin
polarization.Comment: 15 pages, 15 figure
Spatial Distribution of Metal Emissions in SNR 3C 397 Viewed with Chandra and XMM
We present X-ray equivalent width imaging of the supernova remnant (SNR) 3C
397 for Mg He\alpha, Si He\alpha, S He\alpha, and Fe K\alpha complex lines with
the Chandra and XMM-Newton observations. The images reveal that the heavier the
element is, the smaller the extent of the element distribution is. The Mg
emission is evidently enhanced in the southeastern blow-out region, well along
the radio boundary there, and appears to partially envelope the eastern Fe
knot. Two bilateral hat-like Si line-emitting structures are along the northern
and southern borders, roughly symmetric with respect to the southeast-northwest
elongation axis. An S line-emitting shell is located just inner to the northern
radio and IR shell, indicating of a layer of reversely shocked sulphur in the
ejecta. A few enhanced Fe features are basically aligned along the diagonal of
the rectangular shape of the SNR, which implicates an early asymmetric SN
explosion.Comment: 4 pages, 4 figures, appears in Science China Physics, Mechanics &
Astronomy, 2010, 53 (Suppl.1), 267-27
Improved Combinatorial Group Testing Algorithms for Real-World Problem Sizes
We study practically efficient methods for performing combinatorial group
testing. We present efficient non-adaptive and two-stage combinatorial group
testing algorithms, which identify the at most d items out of a given set of n
items that are defective, using fewer tests for all practical set sizes. For
example, our two-stage algorithm matches the information theoretic lower bound
for the number of tests in a combinatorial group testing regimen.Comment: 18 pages; an abbreviated version of this paper is to appear at the
9th Worksh. Algorithms and Data Structure
Conserved cosmological structures in the one-loop superstring effective action
A generic form of low-energy effective action of superstring theories with
one-loop quantum correction is well known. Based on this action we derive the
complete perturbation equations and general analytic solutions in the
cosmological spacetime. Using the solutions we identify conserved quantities
characterizing the perturbations: the amplitude of gravitational wave and the
perturbed three-space curvature in the uniform-field gauge both in the
large-scale limit, and the angular-momentum of rotational perturbation are
conserved independently of changing gravity sector. Implications for
calculating perturbation spectra generated in the inflation era based on the
string action are presented.Comment: 5 pages, no figure, To appear in Phys. Rev.
- …