
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19780012367 2020-03-22T04:27:28+00:00Z



6f

K

NASA CR-135310

THE DESIGN Or AN Fe-12Mn-0.2Ti ALLOY STEEL

FOR .LQ 1W TEMPERATURE USE

by

`	 •S. 	 K.	 HWIANG AND J. W.	 MORRIS, JR.

a
t

Prepared' For

National Aeronautics and Space Administration

f
December 6, 1977

Contract NGr 05-003-562

t Final	 Report

(NASA-CR- 135 	 10)	 'IBE rESIGN OF AID	
2^7$ -20310

Fe-12Mn-0.2T i ALLOY SZEEL ICE LOW
TEMPEEATUBE USE	 Final Report	 (California	 unclas107	 HC AC6dMIUniv., Berkeley.	 Lawrence)	 p

CSCL 111 63/26	 G°153
A01

` Technical Management
NASA Lewis Research Center

Cl evel an'd,	 Ohio
Material	 and Structures Division

:. Joseph R.	 Stephens

Materials and Molecular Research Division of Lawrence Berkeley Laboratory
and

Department of Materials Science and Engineering
University of; Cal i for • ni a

-	 Berkeley, California 94720

F
1	 ^s

i j



1.	 Report No, 2. Government Accession No. 3. 	 Recipient's Catalog No.

NASA Cr-135310
4.	 Title and Subtitle 5. Report Date

The Design of an Fe-13 1i-0.2Ti Alloy Steel for Low Temperature December 6, 1977

Use 6. Performing Organization Code

7.	 Author(s) 8. Performing Organization Report No.

S. K. Wang and J. W. Morris, Jr.

10. Work Unit No_

9. Performing Organization Name and Address

Materials and Molecular Research Division of Lawrence Berkeley Lab. r
Coniract or Grant No.and

Department of Materials Science and Mineral Engineering NGR 05-003-562University of Ca'_ifornia
13. Type of Repo t and Period Covered

Contract report

94720
12. "Sponsoring Agency Name and Address12.

National Aeronautics and Space Administration 14. Sponsoring Agency code
Lewis research Center
Cleveland, Ohio 44135

15. Supplementary Notes 	 none

An investigation has been made to improve the low temperature mechanical properties of Fe^-8-12villa,
0.2Ti alloy 'steels.	 A two-phase(a+y) tempering in combination with col&working or hot-working has
been identified as an effective treatment. 	 In an Fe-12Mn-0.2Ti alloy a promisigg. combination of
16. 'Abstract see above for beginning of abstract.

fracture toughness and yield strength was obtained at -196°C.	 A potential application as a Ni-free
cryogenic steel was thus shown for this alloy. 	 These improvements of properties were mainly attribute
to the ultra-=fine 	 grain size and to a uniform distribution of retained austenite. 	 It was also
shown that an Fe-Tvh steel could be grain-refined by a purely thermal treatment because of its
dislocated martensitic structure and absence of c phase. 	 As a result, a significant reduction of the
ductile-brittle transition temperature was obtained-in this alloy.

The nature and origin of brittle fracture in Fe-Mn alloys were also investigated.	 Two embrittlin
regions were found in a cooling curve of an Fe-12Mn-0.2Ti steel which were shown to be responsible
for intergranular fracture.	 A fast cooling throughthe martensite transformation temperatures results
in a quench-crack type brittleness along prior y grain boundaries. 	 Auger electron	 spectroscopy
dentified no'seuega,tion during solution- annelging tre4t)nent.	 J^ held too long below the transfonnat' c



[	 ,	 finish temperature, the 12Mn steel taidergoes ,-mother Norm of embrittlement. This phenomenon was
attributed to intergranular tempered martenste embrittlement. Avoiding the embrttling zones by
controlled cooling led to a high cryogenic toughness in a solution-annealed condition.

'r

{

i

17. Key Words (Suggested by Author(s)) 	 18. Distribution Statement
Alloy Steels; cryogenic properties

Impact toughness; tensile properties Unclassified
Mattensite transformation ; two-phase 	 {

decomposition; Auger Electron Microprobe

l

19. Security Oassif. (of this report)	 20. Security Classif. (of this page) 	 21. No. of Pages	 22. Price'

l	 unclassified	 unclassified	 103(
f

For sale by the National Tecllnicai Information Service, Springfield, Virginia 22161

0

NASA-C-168 (Rev. 10-75)

s	 _

3

f



THE DESIGN OF AN Fe-lMn-0.2Ti ALLOY STEEL FOR LOW TEMPERATURE USE

1

!	 ,f ABSTRACT

k

An investigation has been made to improve the low temperature mechanical

' properties of Fe-08 -12%Mn-0, 2Ti alloy steels. 	 A two-phase (cy,+y) tempering

in combination with cold-working or hot-; . orking has been identified as an

.	 ( effective treatment.	 In an Fe-12"In-O. M alloy a	 •o^	 promisin g combination
E

of fracture toughness and yield strength was obtained at -19600.	 A

potential application as a Ni-free cryogenic steel was thus shoi% rn for

I

this alloy.	 These improvements of properties were mainly attributed

to the ultra.-fine grain size and to a uniform distribution of xetained

austenite.	 It was also shown that an Fe-SNIn steel could be grain-refined

k .; by a purely thermal treatment because of its dislocated martensitic

. structure and absence of e phase,	 As a result	 a significant reduction

of the ductile-brittle transition temperature was obtained in this alloy.

The nature and origin of brittle fracture in Fe-Mn, alloys were

{ also investigated.	 Two embrittling regions were found in a cooling

* curve of an Fe-12NIn-0.2Ti steel 'vihich uere shoe,.m to be responsible for inter-

°I granular fracture.	 A`fast cooling through the'martensite transformation

temperatures results in a quench-crack type brittleness along prior y grain

boundaries.	 Auger electron spectroscopy identified no segregation during

solution-annealing treatment.	 If held too long below the transformation
4:- {
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finish temperature, the 12L'via steel undergoes another form of embrittlement.

This phenomenon was attributed to intergranular tempered mart-ensite
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I .	 INTRODUCTIO:;

Recent advances in cryogenic devices for use in modern energy and

transportation systems have created an increasing need for new alloys which

retain good engineering properties at very lo ,..., tempexatures .	 Due to its

excellent toughening effect in the Fe lattice, 1-5 Ni is widely used as

a basic ai loying element in most cryogenic steels. 	 While the Ni steels

sho.q satisfactory mechanical properties, their applications are limited

. because _of the high cost of Ni. 	 The importance of developing a Ni-fee

cryogenic steel is obvious when the high cost of Ni is considered. 	 Among

various elements bin has a potential to be developed for the replacement
i

of Ni because of its similar characteristics as a substitutional alloying

{

•

element with Fe.

I
^	 t

A considerable amount of research has been conducted to identify the

role of Mn in solid-state phase transformations in Fe.	 There is now

jgeneral agreement
5-g

 that the transformation products of Fe-tin alloys of

G less than 10% Mn are not far different from those of Fe-Ni alloys of less

than 28%Ni.	 The only difference is when hcp E forms as a' metastable phase
10`15

in an Fe-Mn alloy with more than 10%?•In. 	 Above 28 )NIn concentration

Im the binary alloy becomes austenitic and sho; ,rs characteristics of an fcc

: structure.

Carbon has a strong influence on austenite stability in the Fe-Mn
d

system. ` The presence of more than 1% of C in an Fe-13%Mn composition

16completely stabilizes the austeni.te, as is well kno;tin in Hadfield r s alloy.
a

A moderately high yield strength can be obtained in a medium carbon, high

manganese, ternary alloy system. 	 FIot^iever, these semi-austenitic steels

G

encounter phase stability problems at cryogenic temperatures.`' Russian
•

! r Weight percent unless- specified otheri,ise
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17-18
workers 

17-18
	 shown that the Fe-Mri-C alloys do not retain satisfactory

impact resistance at cryogenic temperatures unless their phase stabilities

are increased by adding Cr or Ni as alloying elements.

Because of the characteristics of their bcc structure, Fe-Pin alloys

with less than 13%hiri show satisfactory yield strength at low temperatures.

How-ever, these steels have been considered inherently brittle for a long

time and the origin of their brittleness has been given little investigation.

Recently Bolton 1 9 reported a beneficial effect of tempering in suppression

of the ductile-brittle transition temperature in 4-10%Mn alloys.

interestingly he reported no evidence of retained phase in his specimens

in	 broad	 inspite of the	 two-phase Ca+ •y) region	 the equilibrium Fe' Mn l

phase diagram. 
11-20	

Roberts 
9 

showed a moderate dependence of the f:

transition temperature on the grain size in the riartensitic alloys.	 Hoi,ever,
3

to the author's knowledge, no serious attempt to refine the grain size of

Fe-Mn alloys has been found in the literature except for preliminary work. 21 {

Therefore	 there is a lack of information on the dependence	 cryogenicp;.ndence- of cr o enrc -i;

mechanical properties on the two important metallurgical variables, retained

austenite-and grain size in Fe4h,	 alloys.

The present ivestigation was designed to promote the understanding fi

a	 o	 o	 -, of the origin of	 embrittleent	 d t	 e	 ythe	 m	 and 	 improve th-cr ocrenic'mechanical

properties of Fe-8-12%Nln steels by metallurgical processings. 	 The approaches x'

to obtain better mechanical properties were 'based on the control of micro-

structures and retained phases.	 A particular emphasis was made on the

decomposition process in a two -phase region	 To refine the size and <'

distribution of the decomposition products, a prior deformation was

employed in the form of either col d-viorking or hot-working. 	 By this process

a sioAfica.ntly improved cryogenic toughness was obtained in an Fe-121L-In



i
s

i
	 3

k	 alloy. To refine the grain size of Fe-SMSn and Fe-10 In alloys a thermal
22.-21

cycling technique 	 was adopted. 11,.iile ineffective in an Fc-12Mn

alloy, this technique was extremely powerful in reducing the ductile

i
brittle transition temperature of an Fe-Mn alloy.

The origin of intezgranular fracture in an Fe-123Nin alloy was

investigate by using an Auger electron spectrometer. Two discrete

embrittling bands in a cooling curve of this alloy were found to beresponsible

for the brittle intergranular failure beloi . the ductile-brittle

transition tem,perature. It was then possible to avoid these embxittling

C	 regions by controlled cooling and thus obtain good 10W temperature

toughness in an as cooled condition of the Ni-free ,Fe-lMn.-0.2Ti steel.
::

r' r

:

i	 }
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II. FaPERI,\2:NTAL PROCEDURE

A. NLATERIAL PREPARATIOV AND INNZTIAL

Alloys of nominal compositions, Fe-&.. n, Fe-10,1n, and Fe-1214n with minor

i
additions of Ti (approximately 0.20) were induction melted in an argon gas

atmosphere. Several ingots were made for each composition. Each ingot

was cast from a'separate batch into _a copper chill mold. The average

weight of an ingot was 9kg. The ingots were homogenized under, vacuum at

1200°C for 24 hours. Then they i-,ere upset cross-forged at 1100°C into

plates of dimensions determined by specimen size (1.3cm thick by 10.2cm

wide or 1.9cm thick by E.4cm) . The results of chei,iical analyses on randomly

chosen-incyots n	 sho rn in Table I

B.	 MEAS U,EP• i e OF TR?\N SFORvLv ION t
1'E^iPLRif iRES

A Theta nilatronic IIR dilatometer was used to measure phase

transformation temperatures. 	 A drat,ring of a specimen used iii this
i'

experiment is shown in Fig. 1.	 Each specimen was heated to 1100°C and
f

held for 5 minutes before quenching to room temperature. 	 Since the pressure

of the specimen chamber was maintained below 10 5 torr,'the specimen surfaces ;<

were well protected from oxidization. 	 A programmed linear heating rate of

. 4400C/min was used and the quenching rate or approximately 70 0C/sec was
Y;

4 caused by a jet stream of fie gas.	 Transformation temperatures were
i

determined as first deviation points from linearity on dilation andi

temperature versus time charts. 	 The experiment was repeated on the same

r
specimen until consistent data were obtained,

` C.	 MEASURE' I'Ec \T OF PHASES

Specimens used for this experiment were either 2cm x 3cm x O.5cm pieces

( cut from heat-treated blanks or optical ni.croscop}^ specimens usually cut
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$: from broken Charpy impact test :specimens. 	 In both cases x-ray diffraction

measurements were made on sections transverse to the original rolling

vi

t direction of the plate. 	 When a specimen showed severe preferred orientation

`.' after cold rolling, 'another set of diffraction data were taken for two other
,^ J

Vertical sections to check the extent. 	 Specimen surfaces were carefully

j prepared to remove any strain-induced transformation products resulting

from previous processes.	 For this purpose a grinding b	 emeryP	 P°	 P	 p	 g	 g	 Y	 Y 	 ofP P
i^

600 grid grade was followed by chemical polishing in a. solution of 100ml
1
1

H2O2 + 3rll fir.	 A Cunt x-ray source c,as used and the beans was monochromatized

by LiF.	 The volume percent of each phase present was caluculated by

comparing . integrated intensities of (200) x , (200)x, and (10`1) E peaks.

`f
When a specimen consisted of more than one phase, lattice parameter

tj corrections were made under the assumption that each phase had an

equilibrium concentration. 	 The formulae used for this calculation are

described elsewhere. 25

D.	 MICROCOPY

J 1.	 Optical Microscopy

a
Specimens for optical microscopy were cut from tested Charpy bars.

Transverse sections were examined.	 After emery paper grinding, a final

polishing vi-as carried out on an l}!m lapping wheel.	 Our best etching
-

a

condition was fottnd to be repetitive 10 second irumersions in picra.l

'	 Ifr (lgm picric acid dissolved in 100;,1 ethyl alcohol - Sml HC1) .

' 2.	 Scanning Electron Microscopy (SE`•f)
s	

^^

r
Fxacture suxfaces of tented Specimens here examined. with an Al%R 1000

a j	 f scanning electron;microscope operated at ?.OKV.	 When needed, energy dispersive

s` analysis of x-rays (EDAX) vras employed in combination with the SEPI.
i

I ^
3.	 Transmission Electron Microscopy (I'ENI)

y 1
Specimens for transTwission electron microscopy were cut from blanls

r



r

which received the desired treatment. Sheets of 0.2-0.3mm thickness Caere

cut. The thickness was then chemically reduced to 0.05mm with a solution

of 100ml 8202 + 4ml HF. Final thinning i-,,as carried out by a jet-polishing

technique with a chromic-acetic solution; '1'759 Cr0 3 + 800,n1 CH 3000H •+• 21ml H2O,.

The optimuL-m thinning condition was found at 20m and SOV. The microscopes

used were a Hitachi HU-125 and a Siemens Elmiscope IA operated at 1OOKV.

E. AUGER ELECTRON SPECTROSCOPY CAES)
Y

This technique was employed to probe fracture surface chemical
is

` compositions of specimens broken in a high vacuum, chamber. 	 The principles

^'

26-31and applications of the AES technique are described elsewhere. 	 The

'
E`

a
machine used in this experiment was a PHI Model 54S scanning Auger

electron spectroi:ieter. 	 A schematic diagram of the vacuum chamber equipped

` with an in-situ fracture device is 'shown in Fig. 2. 	 The shape and

dimensions of specimens used are illustrated in Fig. 3. 	 Either single-

notched or double-notched-cylindrical rods were machined from heat-

treated blanks.	 The temperature of fracture was controlled by liquid

nitrogen flow through the fracture device. 	 The temperature of a pointh

close to our specimen uas monitored by a thermocouple, so the actual

temperature of the specimen might be a few degrees higher than our

-10readings.	 The pressure of the chamber was maintained in the 10

1
_`9

tore range and never exceeded the middle 10	 torr range.

The time needed to prepare the electronics for the first run

after a fracture was normally less than 10 minutes. 	 In most cases a

primary electron beam voltage CE-n) of '3KcV vith a 3eV moclul.alion

i
amplitude (Ent) and a 1300V	 electron multiplier voltage (Vm) were used..

Under medium focusing conditions, a pximary electron beam current (Ip)

3	 x of'2-r3um uas 'sufficient to yield a reasonably strong- signal. 	 The beam



f"x"	
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7	
s

size under this operating condition corresponds to approximately 151trn

in diameter. To obtain average data, at least three points on a fracture 	 i

surface were examined. It took approximately 30 minutes to obtain the

necessary data. After this time, a slow build-up-of C and 0 intensities

from background CO gas obscured valid data. Post-fracture surfaces were

examined under a scanning electron microscope. :.

F.	 MECW,%\1 ICAL TESTING

1.	 Tensile Testing:

Cylindrical tensile specimens of 12.71run gage length and 3mm gage

diameter, as shown inin Fig. 4, tiere used.	 The loading direction was kept
^:	 a

consistent I'dth the rolling direction of the original plate. 	 Tests were

conducted at both room temperature and -196°C in an Instron machine.	 For

low temperature testing, a cryostat was attached to the machine so that #:

specimens were completely immersed in liquid nitrogen. 	 A strain rate of

?	 0.04/min. was employed. 	 The engineering yield stress was deterninect as

the 0.2% offset value.	 Elongation and reduction in area were measured

by a travelling microscope with an accuracy of ±0.01mm. 	 Uniform elongation

was measured on the chart as the elongation obtained until the ultimate

{	 tensile strength was reached.

2.	 Charpy Impact Test: i;

V-notched Charpy specimens of ASUM standard size (lcm x lcnr x 5.5cm)
1

were machined along the rolling direction of plate. 	 Notches of 450

included angle were machined on the surfaces of the rolled plate. 	 The
3

impact test was carried out as described in ASTM E23-72, 	 Various testing
•,3

)._

temperatures were obtained by a proper mixture of liquid nitrogen, iso -

pentane, dry ice, and Corning 710 oil. i	 .
k

(	
3.	 Fracture Toughness Test:,

A compact tension specimen sho,,n in Fij. 5 was machined from blanks



a

8

with its loading direction consitent with the rolling direction of plate.
G
a	 The fati gue pre-cracking and fracture toughness tests were conducted at

room temperature and at -196 C respectively in a 300K lb capacity NET'S
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III.	 EYFERIME-ML RESULTS

A.	 HEAT jV- 0 MECRAINICAL TPEAT- fMF S
OF	 Fe-12,'•in-0.2Ti

1.	 Solution-Annealing Treatment, Initial Properties:

In.Fe-12%'4n alloys, three different crystal structures have been found

i so far;	 6, 5-15. fcc austenite (y), bcc maxtensi.te (a ) , and hcp nartensiae (e)

Depending on the mechanical and/or thermal treatment, each of the three

Structures may be present either separately or in combination with the

others. The following designations will be used to define' various

transformation temperatures during continuous heating or cooling:

Nsa', Ma l	 y -> a' transformation temperatures

during cooling ("s" for start and "f ,, for M

{ finish)

Mse, MfE	 :	 y -> e during cooling
.s

Asa', Afa 	 ot'4- y during heating t

1 As E, AfE	 E } y dtLring heating.

The transformation temperatures measured by dilatometry are ,shorn
i

in Table II.	 A typical dilation curve during heating and cooling an

i Fe-12,Mn-0.2Ti alloy is shotirn in Fig . 6.	 Asa', Afa' , Nisa' , and Wa'

{
temperature trare easily distinguishable.	 AsE and Aft could also be identified :.

within ±30°C.	 However, Mss and MfE temperatures trere not detectable by

C the dilatomet-ry. r

Solution treatment was conducted at 900°C ..	 Soaking for 2 hours

n
a

-	 at this wmtperature was sufficient to obtain recrystallized y phase.	 The

prior Y grain size ranged from 50 to 70p n as shore in Fig. 7a.	 A trans-

formation substructure produced b y subsequent hater-quenching is sho;:"n in

Fig. 7b.	 Two distinct morpho.logi°s of a' martensites were identified.

One is the blocky nartensite crystals r;hi,ch ti•,-ere often bound by thin F
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a

G

platellets.	 The other is lenticular rnartensite with an absence of the

e phase.	 In both cases the a' miartensites were dislocated. 	 No internal k

k tr^tinnino was found. 	 The association of ci 	 and	 phases was delineated in

V
y

detail by a TEM diffraction anal ysis as shoe-in in Fig. S.

Mechanical properties of a solution-annealed Fe-12Mn-0. M alloy

are shown in Table III.	 Tensile test behavior at -196°C is characterized
3

p

by a'modez:ately high yield strength and considerable work-hardening. 	 A
r

ductile-brittle transition occurred sharply at -50°C in the Charpy impact

I test as s_no;Y-n in Fig. 9. 	 The transition was accompanied by -a brittle

intergranular fracture along prior Y grain boundaries.	 Two extremes of

the fracture mode, ,a ductile dimple mode at room temperature and an
i^

E intergranular mode at -196°C, are shoc-,n in Fig. 10.

2.	 Reversion-cycling Treatment and the Effect of the E Phase.: $.r

The anount of e phase in an Fe-12,NIn-0. M alloy is significantly

influenced by thermal or mechanical treatment.	 During the course of .present
x

work a build-up of this metastable phase was found to occur through the

+x' f y reversion transformation.	 Hence, it was possible to closely

^ observe the effect of the e phase on the cryogenic mechanical properties of

the'121N3n alloy with very little interference from other metallurgical

factors.

Austenitizing treatments at di_ferent temperatures above Alfa'

resulted in differing amounts of S phase increased u r :i.th decreasing holding

time- at this temperature.	 Furthermore, a cyclin g heat-treatment bet^^reenz.,

650°C a?zd room temperature rapidly increased the amount of e phase.

The accumulation of the hcp phase by the cycling heat-treatment is

illustxated in Fig. llb.' The holding time at elevated temperature in

eacl, cycle 1^ras 5 minutes, and inter: ittent cooling t ,,as conducted in brine
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water.	 The build-up of the E : phase eras most pronounced in the first few

cycles; no further change was observed after three cycles. 	 A small

amount of retained y phase bras detectable i, ,ithin tine first S cycles, but

was abseiit after subsequent cycles.

Mechanical properties were measured for the specimens reversions- 	 s

cycled five times.	 Charpy impact energy was measured at various temperatures

and is plotted in Fig. 12.	 For 'co;^,parision purposes the same plot of

the solution-annealed case is also presented. 	 Apparently the ductile-

brittle transition was suppresses? to a loser temperature by the reversion-

cycling treatment.	 An optical	 micrograph' and a SEM fractograph of a

reversion-cycled specimen are shoivn in Fi g .* 13a and b respect'ivel.y. 	 The

fracture appearance at -196°C shows a fibrous decohesion along prior y
j

;a

grain boundaries in contrast to the fiat facet appearance of the as-annealed
r

specimen shown in Fig. 10b.

Although the reversion-cycled specimen showed an apparent increase

of impact resistance,-it revealed a drastic reduction of strength in

f
tensile testing.	 The tensile properties measured at -156°C are compared-

with those obtained in other treatments in Table M. 	 The reversion-

cycling treatment decreased the yield strength of the 12Mn alloy by more

' than 40ksi.	 Despite the reduced yield strength the ultimate tensile

strength remained unaffected`. 	 A typical appearance of an engineering
r

stress-strain`cury-- of a revorsion-cycled specimen is shown in Fig. 14.

The premature yieldin g phc nomenon is readilyrecognized in this curve.

3.	 Tenperina and Retained Phases:

Te;ztpering a Llartensitic Fe -tin steel in the a + y -region of egos I-

brium	 phase dia grauni leads to a decomposition of the metastable martensite
f

^; into egtiilibrium a and y.	 The decomposition reaction and subsequclit retention 	 j

I cc-7 1  ___ _L'!:L.	 ....
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of the translorrnation products mar be complicated vhen the e phase
j

intrudes. The retained phases have a significant influence oil cryogenic

mechanical properties.	 In this section the results of an investigation }^

on the characteristics of the two-phase decomposition, and the use of the

retained phases in designing a cryogenic Fe-1.2^,in-0.2Ti alloy are described.

The changes of structure, hardness, and Charpy impact energy at -196°C
'

It
on temperin— the 12NIn alloy for 4 hours at various temperatures between

450°C and 7000C are shown iii Fig. 15.	 The maxima of retained Y phase t

end retained e phase concentrations were observed in specimens tempered

at 500-550°C and 600°C, respectively. 	 The hardness curve shows a broad

plateau at 4500550°C range.	 The maximum impact energy was observed after

500°C tempering, although a rather large scatter_ of data was observed.

All the properties reswned the initial values found in the solution-

annealed condition after annealing at 700°C (iahich is above Afa l ). .

It is evident from the results shown in Fio._15 that a 500°C treatment J

is most beneficial for the mechanical properties. 	 Hence, an isothermal

heat treatment was conducted at this teriperature to assess the hill

capability of retained phases in enhancing cryogenic toughness. 	 A

variation of the retained phases and Charpy energy at -196°C on the l

isothe3:ma:l treatment is shol ,m in Fig. 16.	 The impact energy curve shotivs

a gradual increase with holding time until 12 hours, after which an

equilibrium is reached.	 The curve of the vol. % of the reverted y phase closely

follows the same trend.	 On the other hand, the amotult of reverted E does

not show a major increase during an initial period of up to 4 hours.

t! ticrostructural characterisitics of a two-phase tempered specimen

t i	 are sho p:n in Fig. 17and Fig. 18.	 The most distinctive feature in these

microorap.is is the straight directionality of the original a' lath
E
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bounda.zies, For a comparison purpose art optical micrograph of an

identically heat-treated Fe-&-fri steel is sho:tin in Fig. 19. The lath

boUndaxios in the SNIn'alloy arc rather undulated. The reason for the

. pronounced straightness in the 12Mn'alloy is due to the presence of E:

phase in the initial structure, which will be discussed later. 	 The

particular rticrostructural features remain even after an extended heat

t treatment (120 hours at 500°C) as shown in Fig. 18.

For the particular heat treatment of 500
0
C/8hrs/ice brine quenching,

a set of low temperature mechanical properties was measured.	 Tensile

i properties and KIC values are presented in Table III. 	 All the properties

5
meastired were better than those of the solution-annealed specimens.

= Especially pronounced were the increases of yield strength, unifoiin

elongation and 
KID, 

values.	 The ductile-brittle transition tei;iperatu.re

i measuxed in 'Chirpy tests was significantly suppressed (as shown in

Fig. 20) with a concomittant transition of fracture mode; at -196°C

the fraction of the brittle intern anular fracture mode vas decreased by

one half (as shov,n i.n-Fig. 	 25b) .

xi ( 4.	 Effect of Cold-%, orking on Tejjlpering:

The improvement of. cryoo,	 i.c mechanical properties by two-phase

tempering as described 
in the former section can be considerably enhanced

by plastic deformation.	 This is achieved through structural refi.nerient

of the decomposed product by dcstroyi.n g preferential nucleation and

^"• growth: sites.	 This present section describes ho4 ,t prior  deformation

affects the subsequent decomposition reaction and thus increases the

potential of an Fe-12 1,1n-0.2Ti_ alloy as a Ni-free cryogenic steel.

J A fixed ariount of deformation was given to the blanks of 12Mn steel

,,	 # by rolling at room temperature.	 After a 50 9s reduction in t1 ► :i,ckricss no
i

,r

F trace of s phase was detected by x-ray analysis, v-1 ich indicates
H I	 ^"

^ .A+: #i 	 taw I
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1

;

A
	 the occurrence of a stress-assisted transformation of c -> a' during

i
	

the deformation. After annealin g the cold-rolled specimens for 4 hours

{	 at vario Lis temperatures, changes of structures and properties occurred
f

and the results are summarized in Fig. 21. 	 Several. different aspects
i

of the results are noted for comparison i .,•ith those obtained by two-phase

i tempering alone (Fig. 15) .

The amount of the retained y phase was considerably increased by

adding cold-t^rorking to the two-phase tenpering treatment, whereas s phase

G	 concentration was substantially reduced.	 It nust be noted that the

measurement of each phase by x-ray diffraction methods was obscured by
a

the development of a preferred orientation during the rolling process._
I	

_

1`he shape of the curve, howrever, was essentially unaffected when the data
4

i
j	 avera-ed over three different sections wore plotted, as shown in Fig. 22.

The curve of Charpy energy at -196°C, Frio. 21c, is in excellent

ri correlation with the concentration of retained y phase. 	 The plateau N

I' of the hardness curve was raised to a much hi gher level by the combination

of deformation and tempering, than by te,nipering alone.
x

An as-deformed structure is characterized by distorted martensite

laths with a high dislocation density. 	 N TEILmicrograph of such a

structure is shown in Fig. 23a.	 The blocky nlartensite morphology,

typical of solution--annealed structures (see Fig. 7b) , eras no longer

" visible.	 After annealing at 600°C the structure became a mixture of j

phase: fine-scale equilibrium y, equ librium a and untransformed o:' (as jS
shown in Fig, 23b).	 The distribution of each phase was not only fine

r (approximately 0.51im) but also uniform. " The directional growth of the ;A <

Y	 ` y phase characteristic of a two-phase tempered structure, was completely
rj

n	 ;: absent. ;
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Low temperature mechanical properties were evaluated for specimens

annealed 4 hours at 600°C,.and the results are shotini in Table III and

Fig. 24. An extremely high yield strength t•;as obtained. Also noted in

Table III are the remarkably enhanced elongation and the fracture toughness
„
rli

at -196°C.	 The enhanced toughness is also evident in the Charpy test

results shown in Fig. 24.	 The fracture mode at -196°C, sho:•m in Fig. 25a,

is predominantly a ductile tearing type. 	 Therefore, it is demonstrated

in the above results that an Fe-12ASn-0'.2Ti alloy can be suitably

processed into being a strong and tough steel at cryogenic temperatures.

! S.	 Hot-Zyorking and Tempering:

The cold-rolling process in the previous section. could be replaced

l^
by hot-vorking, but the extent of mechanical property improvement is

i;t reduced.	 From a practical point of viei.t the hot-rolling is more easily

. accomplislied than is cold-rolling.	 In principle, the decompos.tiozi of

metastable al ziartensite on tempering takes place more effectively in

a perturbed structure.	 A perturbed structure can be retained by

^ t quenchin g a hot-rolled	 late.	 In this section a set of experimental data9	 ga	 p	 'P

obtained in hot-rolled and tempered Fe-12Mn-0.2Ti steel is described..

The hot-rolling was conducted at sev eraldifferent temperatures in

the austenitic range. 	 An 1''-thick plate received a Soo thickness reduction

in one pass.	 The rolled blanks were immediatly water-quenched. 	 A part

' of the blank under-went a further treatment, tempering at 500°C for '4 hours.

The hardness and low temperature Charpy impact 'test data are shown in

Table Its.	 Optical micrographs and SEM fractographs taken from the broken

Charpy bars are shovin in Fig. 26.

The impact toughness was improved by hot-rolling alone. 	 However, the

I: gain by additional tempering was marginal.	 It must be taken into account

ri.
,
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that the particular ingot used in this experiment happened to sho..., poor

tempering response in its solution-annealed state. Therefore, the

j impact energy- values listed in Table IV should be taken only for comparison

_purposes.	 The hardness was increased by hot-rolling, but Has independent

of the rolling temperature. 	 Low temperature fracture appearances shown

in Fig. 26 ara consistent with the Charpy data. 	 Unlike the mixed inter-

granular fracture mode in a solution-annealed and teimpered specimen, the

f }an	 othermomeci ;̂ cally processed specim ns revealed mostly a ductile tearing

It
^f type fracture mode.

B.	 TIME SOURCES AID THE PREVENNTION OF
INTERGRr\NULAR BRITTLENESS IN Fe-12NIn-C . 2Ti

Below the ductile--brittle transition temperature an Fe-12"In-0.2Ti

steel suffers intexgranular cracking along prior y grain boundaries. '

Information on the source of thishenomenon is of vital importance'for_P

obtaining a desired toughness at cryogenic temperature. 	 In the previous

sections, various processing techniques to prevent this diastrous

failure were described.	 In this section the results of an investigation

on the origins and the minimization of the phenomenon in the as-cooled

condition is described.'

' 1. - Intergranular fracture in As-quenched Condition:

Not all the martensitic -Fe-NMn alloys show predominantly intergranular

' fracture belol: their ductile-brittle transition temperatures.	 The

dominance of the intei-granular failure mode over the quasi:-cleavage mode

increases with Mn content within 5-12% as shown in the fractographs. of

i Fig. 27.	 ti;'hile exhibiting mostly transgranular cleavage, the fracture

{ appearance of Fe-SMn alloys shot .: some indications of decohesion along

1	 I

martensite packet boundaries.
"ri4	 t



An attempt to identify a precipitate forimed along prior y grain

boundaries in Fe-12In-0.2Ti alloy by TEf techniques was not successful.

As shown in Fig. 28, the prior y grain boundaries were apparently free

of precipitation in the as-quenched condition.

To confirin the TFM results on a different basis, a further investigation {

was carried out by employing an AES technique. 	 This technique is

' extremely surface-sensitive; thus a segregation within a feint atomic

is
layers of the surface should be easily detectable.	 For this experiment a

larger grain size of approximately 200pm was obtained by solution annealing

at a higher temperature,. 1100°C.

The AES spectra obtained from in-situ fracture surfaces of a

solution-annealed and urater-quenched Fe- 12_-In alloy are shown in Fig. 29.

The spectrum in Fig. 29a vas obtained from  ductile fracture surface

produced at room temperature; thus it represents the chemistry of bulk.

:j
The spectrimi in Fig. 29b was obtained from an intergrcinular' fracture

surface produced at approximately -140°C and thus indicates the chemistry

of the prior Y grain boundaries.

No significant differences between the tivo spectra are recognized

4, except- an S peak.	 A rather higher intensity ` of the S peak`ttas frequently

observed on the ductile fracture surface. 	 Examination of a post-fracture

j surface by SEMI-EMIX shot-red that the regions of ductile' fracture were often{

f
}

associated with inclusion particles and that these particles mainly

consisted of ',In and S as shown in Fig. 30.	 The absence of segregation
O

was also confirmed in the specimens austenized below 1100 C; thus
f

segregation was independent of austenitizat on temperature.
}
t -'2.	 Martensite Embrit-tlement;

I' The upper linit . for observing intergranular fracture in in Fe-12i,'in isY	 ' _

17



{̂y extended to a higher temperature when the alloy is heat-treated at 550°C.
, I

The a ggravated embrittlement by this particular heat-treatment isi,

illustrated in the ductile-brittle transition curves shoirn in Fig. 31.

The embrittling treatment resulted in an approximately 150°C increase of

= the transition temperature.	 This phenomenon uas also observed in an

Fe-SNSn alloy.	 In this alloy the Charpy impact energy at -196°C had	 !

deteriorated fron	 3-y4 N-m 	to	 1 :'-m	 by the same treatment.

The characteristeics of brittle fracture modes in both alloys were

not affected much by the enbrit •tling treatment.	 However, some significant

change of the chemistry of prior Y grain boundaries was detected by the

AES technique.

Typical DIES spectra obtaine d from the' embrittle d Fe-12Mn and Fe-S in

specimens are shoim in Fig. 52 and Fig. .34, respectively. 	 The most

pronounced change of the prior, y grain boundary chemistry in 12Mn steel

during the treatment Baas a build-up of t.in concentration. 	 A rough estinate 32

gave approximately 24 %din.	 Significantly, the Mn concentration on the

embrittled fracture surface of the o'•Ln steel V:as also high, approximately

12%, in spite of the predominantly cleavage -type fracture ?ode. 	 Besides

the high Mn peak in both alloys, ,an 1' peak eras also observed on the

embrittled surface, although the intensity ti^as not significantly high.

` Other than the features just described the AES data for embrittled

specimens were not too much different from those-obtained ,from the

' as-quenched specimens.

3.	 Embrittling Sources in the Fe-1Z n-0.2Ti Alloy:

From the AES data described so far, it is apparent that the intergraiulxr

cracking;in an Fe-12Mn-0.2Ti alloy involved more than one source.	 The

observation of the phenomenon in both as-quenched and embrittled conditions

L

_sa,^..-r-a t.avakai.n	 r.. _	 ._.v ..	 u-. +..n...._x 	 -.-	 rag._:' i.'aR.-rixds.}LL
.
a	 •z.s...... ^rs.^sL_	 .._ ^...,^.Lw	 ._
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led to an experiment to locate the embrittlin^ zones in a field with

coordinates of temperature and tire. This i,.:as successfully achieved

in a furnace-cooling/interrupted fast coolin- eXperimetit, whose results

are described below.

Blanks of Fe-12yin-0.2Ti steel received a solution treatment at

1100°C for 2 hours followed by a furnace cooling for a specific period

which gave a specific final temperature. 	 Then they were tal-en out of the

jfurnace and subjected to air-cooling to room temperature. 	 Charpy specimens

were machined from the blanks and tested at -196°C. 	 An intriguing set of

data was obtained and illustrates? in Fig. 3S with the corresponding cooling

curve.	 The specimens interrupted from the continuous furnace-cooling

either too early or too late sho ,,,ed not only low impact energy but also

intergranular fracture (as sho...n in Fig. 36) .	 f-loi-rever, the specimens

transferred to room temperature after 11-12 hours of furnace-cooling did

not experience this intergranular cracking and shot .red high impact absorption

energy.	 The temperature of the furnace at the moment of interruption uas

in the range of 120-100°C. 	 Comparatively high impact energy was also observed

in a specimen air-cooled after 9 hours of furnace-cooling. 	 The increment

of the impact energy in this case, however,was comparati_tijoly small.

The AE 	 spectra obtained from the specimens subjected to three`

different, modes of -`cooling are shorn in Fig. 37.	 The Fe-121Nfn-0.2Ti alloy

directly quenched from the austenitization treatment shows essentially the

same characteristics of Auger pea'.-:s (Fig. 37a) as those of an identically ` {

treated Fe-12,Mn. alloy (Fig. 29b) .	 The specimen air-cooled -after 12 hours

of furnace-coolin	 could not be fractured inter granularly,g	 g	 y, et en at a very

low temperature.	 Therefore, Fig. 37b was obtained froth a ductile fracture

x surface and shoe;,s essentially the same characteristics of bulk Fe-12:41tu as fi
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shos:,n in Fig. 29a. Fig. 37c was obtained from an intergranular snnr^acc

of a completely furnace- cool ecl specimen. In this spectrum an Auger peal:

is observed at an energy level closely corresponding to N.

To summarize, it is clean from the above experiments that . there

are two separate sources o£ intergranular brittleness in an Fe-12iMn-0.2Ti

alloy. One is due to fast cooling from above 1200
 C. The other is due

o
w to a prolonged exposition belot-r 100 C. No indication of segregation

was _found in the fozmor case i0ii.le in the latter a minor N concentration

was found along prior. y grain boundaries.

C.	 GRAI ^' F.EFl FE^1Ei`T OF Fe-u'^In

A,`D Fe-1 0Mn ALLOYS

f, Various processing techniques to improve the cryogenic toughness of

an Fe-12Mn-0.27'i alloy steel were described in section A.	 In this steel
t!

an attempt to obtain a uniform, ultra-fine, grain size by a thermal cycling 
a

technique developed for Fe-12^tNi-0. Mi alloy was not successful. 	 The

ineffectiveness of this technique in the 121NIn alloy steel appeared to

be due to the intrusion of the E: phase, Svhich will be discussed later.
a	

_

However, the therniial cycling grain refinement technique was found to be

effective in an Fe-8'1n alloy. 	 The results of its application in the 8Nln

# and 10Mn alloys are described below.
i

{ 1.	 FE-	 ^•il1:

r
Details of the thermal cycling grain refinement technique are described

} 22-2elsewhel.e.	 A schematic diagram of the heat treatment is shown in -

p'Y Fig,. 38,	 It essentially consists of alternate heat-treatments between

y and a+y regions in the equilibrium please diagram. . The temperatures for

I

each heat-treatment was determined from the previously obtained transformation

temperatures shov-i in Table 11.	 Spec inncns were water--quenched after each
fi	 t^r

J

heat treatment.

F
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A series of micrographs in Fig. 39 shoti•rs successive grain refinement

by each treatment. The initial grain sl'^: , designated as AS (As

o	

Solution-

annealed, 900 C/2h), was 7Opm. In the first step, IA, the grain size

.was reduced by a recrystallization of y at a relatively low temperature

above Afa l . The next refinement, 1B, was obtained by exposing the IA

structure at 650°C, which is inside the ti ro-phase region. By . repeating

'	 - IA and 18 two times, 2B, a substantial reduction of grain size was acliieved

-A repetition of all these steps one more time, 4B, destroyed all traces of

i
long martensite laths of the 2B structure. 	 Average grain size after the

t
2B treatment was approximately 1 un.

r In order to obtain retained y phase a further heat-treatment at 600°C was

i given to the grain-refined specimens	 ti.'hile the structure: after grain

refinement was 1000 bcc a or W it contained '10 vol.% each of Y and e

phases as a result of the additional heat--treatment.

The Fe-SNfn alloy has little ductilit} at -196°C in its solution-

t j annealed condition, as shown in Table V and Fig. 40. 	 Alter the grain

refinement, however, reduction in area was enhanced from 6% to 70-"a
f

and total elongation was increased from 40 to 26%. 	 Initial yield

strength and ultimate tensile strength i-sere maintained during the grain

;.: refining.	 A further increase of the elongation was observed after the

additional retained y treatment. 	 1lowever, this was accompanies by

slightct--creases in yield strength and reduction in area..

The improvement in impact toughness was also pronounced. 	 As shoi.rn

f

}

°Cin Fi g . 41 the transition temperature was suppressed by 130after tile`

grain refinement. 	 The retained y treatment suppressed it an additional

So C; thus a toughness transition .vas not observed above -150°C in the

final structure.	 Fractographs taken 	from both Charpy specimens and tensile
•

i^

i
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specimens tested at --196°C are sho •;rn in Fig. 43. The fracture surfaces

^J	 of grain refined specimens show evidently higher plasticity than solution-

3
annealed ones.

2.	 Fe-ION!n;

The principles of therm^il cycling Grain refinement might well be applied

to an Fc-'.ONin alloys as it is to Fe-8-Mn alloys. 	 As an intern,

Conposition the 10,Mn alloy has less e phase than the 12L%1n alloy and a

lower initial ductile-brittle transition temperature than that of the

$bin alloy.	 Therefore, a moderate suppression of the transition ton, pexature

was expected by the thermal. treatment.	 However, the results described

bolow shoigc,d that the extent of the suppression was not aslarge as was

i expected.

The schedule of heat-treatment was determined in the ;same uay as in

the Fe-8 1 1n steel.	 In Fig. 44, microstructures of a solution-annea.led and

a grain refined Fe-10"'I t alloy are shown. 	 Apparently, the effectiveness
r-

of gain size reduction was not less than that which was observed in the	 r'

;f

Fe-$N-tn alloy.;	 Ho;-:ever, a much smaller suppression of the ductile-brittle

transition temperature was observed in the grain refined Fe-10Mn steel,
a

1
as sho.,m in Fig. 45.	 In spite of the relatively small decrease of

transition temperature, the shelf energy values were increased with

resulting improve tints in ductility, as shot-.,n in Fig. 46.

In suimnary, the data obtained on Fe-SMn and Fe-10'L1n alloys clearly

indicate that the thermal-cycling grain-refinement techni que is effective

only in on e-free dislocated martensite structure.

r

i

i

xh	 ;,

ft
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QUAL1'1	 IV.	 DISCUSSION 	 3

OF PAR'

A.	 - STRUCTURE AND PROPERTIES OF
' I=e-1Z`1n-0.2`I'i EILLOY	 ,

i

a

Phase transformation studies in fie-`^In 10 or Fe-Mn-C 33 systems began

even before the 1930's. 	 Most of the equilibrium transformation products

were deterjnined by Troiano's 
11 

work.	 Transformation studies using

continuous cooling have been completed more recently. 6,8,9'

Except for the fact that bin is a stronger stabilizer of y iron than

li ' the aspects of transformations on continuous cooling of Fe-Ain alloys 	 I
t

 _3

with less than 10% Ma are quite similar to those of the Fe-Ni system

f with less than 29% Ni. 734 	 At modest cooling rate an equilibrium ferrite,

`r massive	 ferrite	 and dislocated martensite structures are obtained for 	 ai

t
0-2%, 3-5%, and 6-10% Mn steels, respectively. ' 	The presence of 10-28%AIn

in an Fe lattice produces some hcp e phase, i,;hich is not observed in the
i{

A
Fe-Ni system.	 The relative amount of e phase increases with Mn concentration,

then decreases as the high temperature y phase is retained by more than

28% addition of Ain.	 The structure of Fe-12Mn-0.2Ti alloy is basically

a) dislocated martensite with approximately 15 vol. % of c phase in the

solution--annealed condition.
f

The solid-solution hardening effect of AIn in Fe--4~10%Mn alloys is 'iE

M 9,13,21minimal.	 Most strengthening in these compositions is origina.ted

by dislocation substructures in the con t i nuou s trans formation products.

,i
1-2 , 3SA minor addition, up to 3%, of Mn does not affect the ductility of Fe.	 '

However, increasing Mn from 4% to 8% increases the ductile-brittle transition

j, temperature of the bcc'structure through a substructural	 hardenin g effect.C.

With more than 12% Mn,, the alloys beco-me less susceptible to a sharp transition

s

because;.'lie soft phases such as c or y become predominant. 	 The gain of

l	 j low temperature toughriess in these alloys, of course, is accompanied by
t,
x	 R,

w	
,

F
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a. deterioration of strength. 	 In our present investigation, Fe-12NIn

was chosen as the main composition of interest because the lotrest

transition temperature is obtained in this con:positi.on concomitant with

the highest martensitic strength. 	 Ti was added to scavenge interstitial

L-ppurities

1.	 Effect ol^ the E Phase on Mechanical Properties:

{	 The observation of the presence of hcp E phase has been made in

36	 37	 10-11	 14 -15numerous systems; pure Fe under high pressure, 	 Fe-Ru,	 Fe-Mn,
3;

38-44
and Fc-Ni. -C-r.	 In Fe-Ni-Cr alloys it has been y ell established that

E is a discrete phase with a hcp stricture and not merely an aggregate

of random faults in y. 41_2	 Often the hexagonal phase is observed in

association with a.' martensite. 	 This raised a question of controversy r

'r	 concerning the mechanism of the transformation decomposition of the y phase. f ^

41-	 14-15
Venables	 and Schumann	 suggested a sequential transformation

j

mechanism of y _r E > a' .	 On the other hand, Dash 40 and Stone insisted I

on independent tra.nsfor:^ltion routes of y -> E and y -> a'.	 Despite the
I

controversies, it is generally accepted that the phase is metastable. 	 An
4

exceptional observation ti.,as made, however, of an Fe-18Cr-SNi stainless
I

steel in which the E phase was detected by TES=1 after a prolonged holding

43
at a subzero temperature.'

In Fe-in binary alloys, the e phase has been observed for

10--11	 14-15	 38concentrations of 10+28 %din.	 the metastability of this

phase against plastic deformation has been well documented in the
S

literature. 11, 22, 3S	 Horiever, it is less obvious villether the transitional i	 s

21behavior of the e phase has any beneficial or detrimental. influence	 on

cryogenic mechanical properties. 	 This is an irportant point to be; clarified

in initially martensitic Fe-Un alloys since this phase may intrude

frequently during a specific heat treati;tent. ^.
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w= In a solution-annealed Fc-121Mn-0.2Ti alloy, there are two distinct
i

g morphologies of a' as shownin Fia. 7b. 	 The TEM obs ervations of the

F_ phase in this specimen were possible only in the regions of block-
<<

i

'S - morphology.Ho•;ever, not all such regions werelike- a' mar ensue 	 '
S

associated 1Yith -	 Holden et al,	 did not observe the c phase in ani

Fe-12.5 %P}In a! ioy, and attributed its absence to the s > a' transformation

i; during his electro-thinning process. 	 However, in view of the specimen

dimensions it is unlikely that the stress-assisted transformation

occurred locally during the preparation in the present investigation.
t I

Therefore, pies ent data support the proposition by &reedis' 42 that the

,i peculiar block-like morphology of a' crystals is not a sufficient condition

.I for the presence of the s phase.

ii
I	 A
i	 l

A typical appearance of the s phase is shown in Fig., 8 in TEM dark-
_

jfield contrast of an 121 zone.	 A streaking due to the thinness of
E:

the e platelets was observed in the diffraction pattern, but the rmicrograph

j rshows that the thin e	 nphase plates do not cov e 	a.	 ylath boundaries in any
-

continuous fashion. 
44	

It may be a consequence of an E: -> a' transformation

by° a localli zed strain which accompanies a' crystal formation.	 Although

a complete analysis is not available, this result favors the sequential"
i

Y > s > a' transformation. 14-15, 41

The amount of e phase in Fe-128Th-0.2 i steel is dependent, on the

soaking te;aperature in the austenitizati.on process.	 Although the variation

is not significant, the dependence of the amount of s phase on the previous

austenitization temp erature is shown, in Fig. lla.	 A s:iiO.lar observation

was made earlier by Parr 
12 in a low carbon, Fe-1S.S%'1In alloy. 	 Ile

reported the occurrence of a max-!T-mm E:concentration after. a 1250°C

e	 ^ treatment.	 Present data show a rather smooth plateau at around 95 0`1050°C.
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Since the highest temperature employed in this work was 1050 0C, the data

f cannot confirmParr's observation.

The accumulation of the E phase by a heat-cycling to a temperature

just above Afa', as shown in Fig. llb, is an interesting phenomenon.	 A

similar example is found in a maraging steel 46-47 where an accumulation

of reverted, y phase was observed by essentially the same treatment. 	 A

local adjustment of composition occurs during heating through the two-
J

phase region.	 Once the temperature exceeds Af ra', homogenization takes
F

place.	 Nowever, the removal of compositional fluctuation is difficult 	 3

because of the slow rate of diffusion of solute atoms in the fcc y structure
3

{ and the insufficient time allowed for the diffusion,.

In Fe-lNn-0.2Ti, the local perturbation of composition may be

favorable for the formation of some metastable F- phase. 	 Therefore, the

?	
.i

accumulation of c phase occurs by repeating the brief austeniti.zation

process.

1	

i The Teversion-cycled struCture is a useful matrix in which to determine

the effect of c phase on cryogenic mechanical properties of martensitic!
f

Fe-Mn steels, since the structure is relatively unaffected by other.

n-ta.11uraical factors such as grain size and retained austenite. ` From

the results obtained in this experiment (Fig. 12-14 and Table III)_ it

can be concluded that the E: phase is beneficial for impact toughness,

} but only through some sacrifice in yield stren gth. 	 The serious loss of

"
1

strencth is mainly due to the stress assisted transformation of E to al.
d

45, 4S-49Therefore, an attempt to use e phase to obtain toughness by a. TRIP

F (:f'ransformation Induced Plasticity) mecha^ii.sm must be preceeded by a

treatment to maintain the strencth of the original matrix.

1	 . 2.	 Temp--Tina	 and	 Retained Phases:

As described' earlier, the s xuc ture of a solution-annealed Fe-12, ,dn-0. M.

^r
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alloy is essentially dislocated martensite with a small  mixture of e phase.

When this structure is heated to a temperature within the two--phase

(a+y) region of the equilibrium phase diagram, equllibriwi y phase

nucleates. The new y'phase has a higher solute concentration, and thus

a lower iransfol-mation temperatures that the previous matrix. 	 The	 I

retained austenite may be stable against a transformation to a' at -196°C.

The riature,of the two-phase decomposition and the retention of the 	 i

y phase is essentially the same as in Fe-Ni- alloys.	 The effect of the

retained y phase on low-temperature mechanical properties of Fe-hi steels

has been studied extensively. 24, 50-57	 Many workers have observed improved

impact toughness -frith a 'small amount of retained y phase. 2, 52-55, 57

flowever, it is not clear yet whether the - tougliness comes from the retained	 a

y per se, or from an interaction between the fcc phase and interstitial

impurities in the matrix. 	 Stability of the retained y phase against

mechanical deformation is another subject of question`. 50

In Fe-Mn alloys, data on the effect of two-phase decomposition products

on mechanical properties are scarce. 	 Bolton 19 reported some beneficial

[[
l effect of tempering on low temperature impact properties of martensitic

I
! Fe-Mn steels with less than 10% hn. 	 No retained phase was found in this

work.	 The results obtained in this present investi gation on Fe-1214n-0.2Ti

alloy are quite different.

r
As 'sho;cn in Fig. T5, the amount of each constituent in a two-phase

tempered structure is strongly dependent on the tempering 'temperature. 	 This
t

must be a consequence of the diffusional characteristics of the et' > a + y

' { transformation.	 -The occurence of maximum concentration of the retained

y phase is determined by a kinetic constraint at low temperatures and an

•	 ' lower equilibrium solute concentration at high temperatures. 	 At high

f	 ^;
temperatures the rapid 'increase of e with decreasin g ;y concentration is an
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result of the low stability of the Y foria •d at this temperature.

The two -phase decoripri ' ition in Fe- 12'• 11n- 0.2Ti alloy results in a

unique microstructure, as sho^-M in Fig. 17 and Fig. 18	 The preferential

nucleation and groi ,.th of the equilibrium y phase along prior -y or CO El

martensite lath boundaries has been observed in many alloys. 24, 50, 54, 58

IT,, the 121Mn steel, this reaction is particularly accelerated because of

the pre-existilig E phase in the solution-annealed specimens. 	 In the

previous section it was noted that the location of discontinuous s sheets

was always along h-- blocky martensite boundaries.	 A diffusionless j

reversion transformation of e -> Y occurs at 240^ • :50oC (see Table II)

s
during heating.	 Therefore this process precedes the diffusional two-

phase decomposition. 	 In the latter reaction the easiest path for the

growth of the reverted y phase is along the ire-etisLing lath boundaries.

This	 in 1results	 a much more straightl, aligned microstructure than an

identically heat-treated E-free Fe-SAIn martensite structure as shown in

Fig.	 19. t"

The 'low temperature impact toughness of a two-phase tempered
a - ^

Fe-12t\in-0.2Ti. alloy can be correlated with the amount of retained Y phase.

The proportional increase of the two values is most eviclent in the

isothermal heat-treatment at 500
0
 C, whose results are shotm in Fig. 16.

The effect of some retained e phase must be insignificant. 	 This is shown Vii:

^
3

t

by the lack of correlation between the retained E and the impact energy

curves, particularly in.the initial period (up to 4 hours). 	 This is in

the for:nor	 that the	 is	 beneficial	 foragrecnent with	 result	 E phase	 only	 1.110

toughness through soi'ie sacrifice in yield strength.

_ The s•ignif:icance of tvo-phase tempering from the mechanical property' point

of 'view is that it increases strength and toughness simultaneously, as

shown in Table Ill.	 This increase i.s mainly due to the grain refining 1=1^,'

Ffno x°tl7Ui^astt4ts^ =̂." ^rc""'^	 r.Cc	 L.,+ 	 .-	 - ^--^
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:	 rc
effect which accompanies the et' -> a + y decomposition reaction.

t

Impingement of the newly formed phases of two different structures'
_

imposes a constriction on grain coarsening. S7 	 The resulting fine grain
I

size is sufficient to compensate the softening effect of recovery in the

initial martensite structure and increase the retention of y or s phases.

The unaffected yield strength with the presence of retained y has been
l;
:^ ( also observed in_many other Fe-tii based systems. 24, 46, 50, 59

a From the present data it is difficult to isolate the contribution

fit! of reduced grain size to the impact energy from that of the retained

rf' y phase. - FIowever,' the latter must be more significant	 than	 the former,

at least inthe initial period of tempering. 	 Supporting this view is

x" an observation made by Hwang 5o et al. in an FE-Mi-0.25Ti alloy of ultra-

fine grain size.	 An enhanced impact energy in this alloy was observed

' by introducing retained y-without any apparent chango, of grain size.
i

3.	 Effects of Plor k ing on Tempered Structure:

The extremely directional characteristics of the new; phase growth

i-n the ti-o-phase tempered Fe-12Nin-0.2Ti alloy can be substantially changed

by adding plastic deformation to the tempering treatment. 	 Miller 57

reported similar results in some'martensitic Fe-Ni alloys and Fe-An

i

alloys of lore Mn concentration. , The -effect is more dramatic in the 12NIn

,w
steel because of the e phase which is an origin for the y phase

directionality in the microstructure.

The defor,^ation provides the alloy t^;ith a large driv.L 	 force for the

nucleation of the new phase in the a' -> a + y decomposition process.

t
I

In addition to increasing the stored erierg}, the deformation transforms

r e to a l by a stress-assisted mechanism and thus removes the origin ofF

C deleterious e -> y reversion during subsequent heating.

M'

I:
a

I j

-__
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During the two-phase tempering, nee.' y grains appears to nucleate

randomly on severely deformed boundaries as well as on dislocation cell 	 ^1

walls.	 The nucleation and grot,rth in the deformed structure proceed at
;

much higher rates than in solution-annealed structures.	 This is

evident by the comparison of the amount of transformation products in

F each case (Fio. 21 and Fig.	 15) .	 The coarsening of the nest' phases is
^i

restricted;, ho,,ever, by the-two-phase impingement.	 This leads to a

j structure which consists of uniformly distributed ultra-fine grai.zis, as

'I shown in Fig. 23.

The effect of cold-working on the subsequent two-phase decomposition
C	 i

is most pronounced in the phase analysis of the final structure, as

shorn in Fig. 21.	 The substantial increase of retained y is a

l consequence 
of 

two factors: `	 11 high decomposition rate and 2) the increased

stability of Y due to the ultra-fine grain size. 	 The effect of the fine

grain size in reducing the Y } a' transformation temperature eras

I demonstrated by heslie 56 in an Fe-;;i alloy. 	 The significantly reduced

e phase concentration is also a consequence of the increased stability of
I

j the y phase.

ji The improvement of mechanical properties by the cold-vorking and

a tempering treatment is phenomenal.- 	 The enhanced properties may be
G y

` attributed to the fine grain size and the high stability of retained

f

austenite-.	 The relationship betc•,een the increase in the cryogenic

impact absorption energy and the amount of retained aust.enite 	 is	 shown
f(;

In Fig.	 21.

From the results sho,m i'n Tab`le ITI and Pie. 21 it is confirmed that

the yield strength of a tti :o-phase deco,-rposed structure is not affected
t4r

by the presence of retrained y phase. 24' SO, S9
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i

yield strength,	 1172	 Lrlm 2 at -196°C, was obtained from a specimen which

contained more than 70 vol.% of y phase.	 FIo,, ever, this may be an

overestimate if the preferred orientation effect shown in Fig. 22 is

t
aken into account. 	 The average grain size observed in Fig. 23 is .^

t approximately 0.3um.

The replacement of a cold-i,;orking process by a hot-worUng one

' may be advantageous from; the financial point of view. 	 In this case the
i

` structural refinement is governed by recrystalliza tion of the Y phase. )

1
Since the deformation is conducted at a high temperature well above

'
I	 ^

A£a', a dynamic recovery may take place. 	 Therefore, to maintain a
i
-

j perturbed structure for the subsequ e
nt tempering, a hot-rolled

specimen must be rapidly cooled before full recrystalliza.tion and

grain growth of the y phase occur.	 This appeared to be achieved

by water-quenching, as the hardness in Table 1V indicates.

' -Ho:aever, a relatively small. gain in the impact energy by this

additional treatment was observed.	 This suggests that the stored energy

provided by hot -uorka.ng is not so large as to };eep the'decompositi.on

reaction proceeding at a high rate, as it was in the cold-worked case.

Nevertheless, the moderately improved Charpy impact energy and the

{ ductile appearance of the fracture surface in the as-rolled condition

(shourn in Fig. 26) indicate that hot-rolling may have potential usefulness,. r

1 B.	 SOURCES AND P REVE`TION OF
INTERGRA\U LAR FR.Ar'TURE	 N AN f	 ;

r Fe-12_ in-0.2Ti ALLOY

A solution-annealed Fe-121Mn-0.2l'i alloy fails intergranularly below

its ductile-brittle transition temperature. 	 The brittle fracture occurs
C

along prior austenite grain bounr_Iaries and the denuded grain boundary

hfacets reveal little plasticity.	 The intergranular fracture Mode is

- r

-a
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uniquely observed for this composition. 	 Other riartensi.tic Fe-61n alloys 	 !

are prone to transgranular cleavage type fracture with decreasing tLn

concentration.	 This is illustrated in Fig. 27.	 It was confirmed that

the addition of 0.2 oTi did not influence the nature of the fracture mode.

Bolton et al. 
19 reported the inter granular fracture as a coiruron mode

of brittle failure in Fe-Mn alloys ;%r ith less than 13%Din, which is in	 7

9
disagreemer_t with the present observations.	 On the other hand, Roberts

reported	 a cleavage fracture in Fe-9 CMn alloy. 	 This was sup ported by
A

o- ^ a •	 21, 60	
u

other obs.	 d^lons	 including the present one.- However, it must

be noted that intergranular embrittlement in some tempered lol ", carbon
ii

61--65
steels is accelerated by the addition of a fev percent of tin.

The information on the source of intergranular embrittlement in

Fe-4n binary alloys is of critical importance trhen designing a cryogenic

steel. based on this system. ` 	Unfortunately, little data are found in the

literature which deal with the disastrous failure mechaiiism for this

particular system.	 The results of the present investigation do not
C

} provide a full explanation of this pheno;ienon, but they do provide some	
3

now insights into the problem.
:r

r 1.	 Intergranula.r Fracture in the.Sol-ution-annealed Condition:

I An extensive -amount of research work has been done on intergranular

f fracture which occurs in iron-based alloys ranging from relatively pure

Fe to stainless steels.	 The observed phenomena are diverse, but they may

t	 1" ? be divided into two broad categories. 	 The first category includes all

the 	 stances i•there the particular r ode of brittle fracture is observed

' after a specific heat-treatment at a relatively, lo ,,%r temperature.	 Examples

of such a heat-treatment are annealing of pure Fe, tempering of 1\i-Cr

i  76-55steel,	 etc. 	 To the second category bolong the occurence of inter-
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granular fracture in specimens solution-annealed at relatively high

temperatures in the Y region. Quench-cracl.ina 86-91 and phosphorous

embrittlement 61 are specific examples: The problem in Fe-121 1.In alloys

belongs to both cate g ories. This alloy sho;:^s intergranular fracture in

the as-quenched condition as well as after a heat-treatment at a specific

te;;perature.

Except for quench-cracking, the grain boundary failures cited
u

above mostly involve a segregation of harmful impux •ities or alloying

'

	

	 elements along prior *y grain boundaries. The chemical segregation is

presumed to decrease the cohesive energy of these boundaries. In fact,

19
Bolton et al.	 attributed the brittleness of dislocated martensiti.c

	

r j	 Fe-bin alloys to the same cause. However, the present ex--perlinental data

on Fe-12Hn alloys shoo that the hypothesis of s.eGregation 	is not alWays true.

In detecting chemical ,species the problem involves both spy.,.`.-' and

spectroscopic resolution, high resolution TEM e.g. lattice imaging 92
^.

	

t '	 and optical microdiffraction is capable of detecting minor second phases

	

{	 and solid solution effects (through. chanc r es in lattice, parameter) at

s
high spatial resolution (-10^). On the other hand spectroscopic resolution

such as by Auger, vhilst d sting^tishing elements of adjacent atomic nwnber,

suffers front relatively poor area spatial resolution but good depth

29-30, 65, 93-95
resolution. The Auger technique,	 because of the short

escape depth of the secondary electrons, can be po;; , erful for detecting a

segregation of few a.t:omic layers if the region can be denucled by fracture.

'	 In a solution-annealed specimen no significant segrcgati.on was observed

`	 by TENT _(Fig. ,28) within the resolution limit available in the present

r
investibation. it was neither detected by AX-S, as sho li in Fig. 29. The

i	 only difference bet:reen bu1E< and grain bou^ndarics of a solut:i:on-ion
a

_^
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i

specimcri was the erratically high S peak in the former. 	 This turned out

to be a result of the hi gher population of NInSparticles on the ductile

fracture surface as shown in Fig. 30. 	 Therefore, from present data the

intergranular fracture in the solution-annealed 12PIn alloy does not appear

to be a consequence of cherni.cal segregation.	 Of course this does not

preclude the possibility of having segregation in the austenitizing

treatment if the alloy is doped by a specific element such as P. 61

2.	 Martensite Embrittlement:

9	 83	 96-•97Many nartensitic steels	 show a deterioration of toughness

when they are subjected to a tempering in the relatively low temperature

range of 260°C-360°C. 	 The phenonmenon is often called "inartensite

embrittlement" of "350°C embrittlement."	 The embrittling sites have

been delineated to be either transgzanular or intergranular. 	 In the former

case -Thomas 
102 

attributed the phenomenon to the thermal instability of =d

interlath retained austenite.	 For the latter	 McMahon 64' 8' proposed_case

a model which assu;-ned segregation of impurities in the austenitizing

treatment.	 In his model, carbon diffuse onto the prior austenite grain
`i

boundari; ; during the tempering and thereby forms a brittle interface between

the carbides and rjt.rix. 	 However, no experimental evidence is yet , available "

to prove this hypothetica_ 	 '°aregation in the austenitizing treatment.

The martensite embrittlement in martensitic Fe-din alloys was reported

by Bolton et al. 
19 

'In this work the embrittlement was evidenced by a i

measurement of impact absorption energy at room temperature.	 The embrittlement
3

is confirmed by the present observations in Fe-12Nn and Fe-Sin alloys.	 The

decreased toughness of the Fe-12Nin alloy, by 350°C -Beat treatment vas revealed

by the rising of the ductile-brittle transition temperature, as sho%^.n in

Fig. 31.	 In the Fe-8A1n alloy this property c: ,as measured by a drop of

°Charpy impact energy at	 -196C.

I.	 i
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The AFS data obtained from low temperature fractL11 •0 surfaces of

embrittled specimens differ from these obtained fxom bulk surf-aces in their

tti peaks. Therefore, it is evident that Mn diffusion occurred during theC,

heat treatment. Since the treatment is conducted essentially within the

two-phase region of the equilibrituin, phase diagram, it is not surprising

to observe higher Mn concentrations on high an gle boundaries. 
In fact,

the higher concentration c ie Mn on the embrittled surface of Fe-SL%bn alloy

strong ly indicate that the cleava ge path in this alloy may be aloncrQ	 C,

martensite pac'Net boundaries.

It is not entirely obvious i-thether the se gregation of Mn in those

alloys is directly -responsible for the observed embrittlement. However,

a hypothesis for an extreme case may be made such that a brittle interface

forms beti•..cen tt^.,o thin layers of Mn-depleted and Mn-en-Liched regions.

This is feasible since the diffusion of the substitutional Mn atoms must

be limited	 low temperatureshort distances at a lo temperature of 350
0
 C. In

raddition to the NIn segregation, a small amoun t of N ua-s often detected

on the embrittled surface. This may further weaken the brittle interface.

3. Embrittling Sources Durin g a Slot.; Cooling:

From, the results discussed in' the previous sections it was deducted
s.

that the intergranular fracture in an Fe-12Mn steel may not be of single

source but of multiple ones. The idea was that either a diffusionless or

a sub-micro scale diffusional process could -result in the same fracture

appearnce in SEM. This is evidenced by the experimental results shorn

in Fig. 35 and Fig. 36.

There are two extremes of cooling rate which cause intercy-ranular

ri weakness. Quenching from the austenitization temperature is one extreme

and a complete furnace-coolin g is the other. Surprisin gly, a stepwiso.

is
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-J
ti

cooling almost entirely prevents the intergranular fracture and thus

,a
1

increases the loti-r temperature impact toughness. 	 The stepwise cooling

essentially consists of a furnace-cooling to approximately 120°C
i

followed by an air-.cooling from this temperature to room temperature. s

1
The critical temperature turned out to be very close to Mfa', as shown

in Table I.^.

The nature of intergranular fracture in the quenched condition,

appears ..o	 e a sort of	 wench-cracking.	 h[hen the alloy is cooled rapidlyPp	 ^.	 ^	 q	 Y	 P	 Y

through the 11,1fa l temperature it encounters a violent impingement of a' +'

martensite plates on its prior y grain boundaries. 	 The dama ge to the

prior y grain boundaries gilt be amplified in .the presence of the e phase

via the y -> e -> a' transformation route.	 Since the c phase is the densest

€ hase in the Fe-MP allo s	 nei ghborin g 	rains undergo aP	 Y s	 g	 ga	 o y g	 sudden contraction

and expansion over a short time and temperature interval. 	 The grain

boundaries will fail to find time to accomodate the local strains in the

adjacent grains and thus become micro-cracked. 	 This explains why the

cracking along prior y grain boundaries is far more dominant in an

,. Fe •1214n alloy with approximately 15 vol . % of e phase than in an Fe -SNin

alloy with virtually no ,e phase.

Another source of the interoranular weakness in an Fe-I2NM-O .M alloy

sets in after the alloy is completely transformed to a' martensite with

an admixture of some a phase. The fact that this source can be suppressed
r

f;
by a fast cooling suggests that the origin of embrit'tlement in this case

is related to diffusio:tal characteristics. 	 The embr_ittlement is pronounced
1

in a specimen ;field below-the ^ifa' temperature for more than' 2 hours. i

x Therefore, the di£f^tsional process must be active at a temperature as lour
'Ft

°C.	 PAGE ISas 100
 pRI GAL UAyrl'Y^_
OF PAR . Q

a

1`
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This observation is strongly suggestive that the source of the second

embr:ittling phenor,enon has a_ common nature with the martensite embri.ttlement

discussed in the previous section. The reasons are: 1) the embrittling

occurs only in the martensitic structure 2) it shOWS the diffusional

characteristics.	 However, it is not clear at this moment what kind of

Species is responsible for the embrittlenent. 	 The AES data (fig. 32) for

the quenched and embrittled (at 350
0
 C)specimen showed a significant

concentration of Mn on the grain. boundaries. 	 On the other hand, the bat

:i concentration on the grain boundaries of the furnace-cooled specimen was

s	 R not higher than the bull;.	 In both specir.,ens some intensities of an ti

peal: were observed, but the concentration was too small and the data

scatter was too large to draw a conclusion. 	 Therfore, further investigation

- is needed to identify the element which is commonly responsible for the

k
embrittlement in both cases.

r:
C.	 TFICP NtU CYCLING GRAIN" RE.FI\EAfENU

Ih' Fe-SMn and Fe-- 10'••In STEELS

Jin et al. 
22-23 showed that an Fe-Mi-0.25Ti steel can be grain-

refined through a thermal cycling technique. 	 This technique essentially

J consists of an alternating heat-treatment in the 'y and a + 'y regions, as

shorm in Fig. 38.	 It was delaonstrated that an ultra-fine grain size cias

obtained by this technique, and the fracture toughness of this alloy

was significantly enhanced as a consequer_ce'. 	 Similaz:. grain-r. efi.ning

0
P-^

24	 55	 9£-100
techniques have been reported in other alloy systems. 	 '

} 0

o The application	 gication of the thermal-c clin g technique for refinin g the grainpp -	 )'	 c	 q	 ^	 g

? size of a Fe-1214n-0.2Ti alloy was not successful'. 	 The -rnason appears	 {

to be the intrusion of the e phase in this alloy. 	 As discussod earlier,	
i

:j the diffusionless E:	 reversion induces an extremely directional growth
f

of equilibrium y during the subsequent tv,o-phase heat treatment.

n
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' This must not be a problem in an E-free dislocated martensite

structure, such as in an Fe-SNIr1-0.2Ti steel 	 In fact, the structural

E
development shotvm in Fig. 39 demonstrates that the thermal cycling

E

1 technique can be successfully applied to this type of structu'ze.

The reduction of grain size from 70pm to approximately lum resulted

in a suppression of the ductile-brittle transition temperature (Tc) by

1 i 130°C.	 According to Stroh's 
101 

relationship this gives a. slope of

, 310C/tnCpm) in a plot of Tc vs. bL d, as shown in Fig. 42.	 This value

Is slightly Tess than what Roberts 
9 

observed in. an Fe-%In alloy, but

hi gher than Bolton's 
].9 

data for an Fe -S'•In alloy.
jrI The introduction of retained austenite in the grain-refined st ructure

1
results in an additional suppression of Tc by 50 C.	 1•foi-,ever, this

accompanies a: slight degradation of yield streng th, as sho ran in Fig._ 40.

j„ This appears to be an indication that'the retained austenite produced

in the fine structure has loi., stability against mechanical deformation.

Therefore, as reported by flt,:ang et al. 50 for an Fe-Ni alloy, the K - value
IG

1 might have not been increased by the supplementary heat-treatment.

'	 ff
f

The application of the thermal cycling technique to an -Fe'-IMi

steel was not as effective as it ,had been -expected.	 The reason appears
it

to be the presence of an unexpectedly higher amount of E phase in the

' initial structure.	 X-ray analysis ident i fied approximately 12 'vox. o

' in this alloy, as compared to 15 vol . 6 E in an Fe-12Mn alloy.	 Accordingly,

the suppression of Tc was not as significant as it was in an Fc-&Mri alloy,

l in spite of the apparently fine stxuctue, as shoi:n In Fig. 44. 	 Therefore,

° this result confirms again that the thermal-cycling grain-refinemont is

effective only in an. E-free dislocated mar -tellsite sti'ticture.

x	 ,^
w
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	 V. CONCLUSION'S

The following conclusions may be dram from the present investigation:

1. A temperin g treatment within the two-phase (a + y) region is beneficial

for the low temperature mechanical properties of Fe-12,Mn-0.2Ti steel The

property improvement is obtained mainly by retained austenite and grain

size reduction.	 However, a martensite embri,ttlement is induced by the
i

treatment at a particular temperature around 350°C.

j 2.	 Cold-vorking enhances the improvement in the cryogenic mechanical

properties produced by the two-phase tempering. 	 This is achieved
j

chiefly through an increase of the decomposition, rate and the removal of
f

w

preferential sites for the -new phase.	 Combining the t14o processes results

in a simulataneous improvement of toughness _and yield strength in th e

126In steel.

3.	 Hot-corking can replace cold- •.norki.ng to a certain extent.	 fiowever, I

he increase in toughness by additional tempering is not as significant. !

4.	 The presence of e phase`suppresscs the ducti le--brittle transition

temperature of 12NIn steel, but only at the expense of yield strength.

S

Si	 The source of brittle inIergra:nular fracture in an Fe-12Mn-0.2T

alloy is two-fold. 	 The first one is connected with the continuous

7 transformations during a fast cooling from an austenitization treatment.

The second one can be delineated by either a quench and tempering or a
iY

complete furnace-cooling.	 This source has diffusional characteristics,

but the identity of the responsible species needs further investigation.

6.	 The embrittling sources can be avoided by a step-t;ise cooling with I;

O
respect to the critical temperature (around- 120 C) with resulting in an

increased cryogenic toughness.

7.	 An Fe-SiMn alloy can be toughened by a thermal cycling grain--refinement

30
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Table 1. Chemical Composition of Alloys 	 W

Composition	 Alloy Designation
fi.

(vit. pct)	 Fe-SP•in	 Fe-10<In	 Fe-12DIn-0.2Ti	 i
I:

,Fe	 Bal.	 Bal.	 Bal.

.	 Mn	 7.8	 10.5	 11.0

Ti	 _ 0.04	 -	 0.16

C	 0.002	 0.043	 0.001

0	 0.050	 -	 0.025	 ,.t

S	 0'.006	 -	 0.007

P	 0.007	 _	 0.007

Al	 0.38

Mo 	 0.010	 i

Ni-	 -	 0.030

r_

Cr	 -	 -	 0.002
t	 `!

V	 _	 -	 0.010'

Nb	 _	 0.005

- Not Analyzed

E	 _	 '
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Table 11. Transformation Temp erat tire. s (°C) of Fe -din Alloys

49

Nominal Composition' AsF-	 Afe As z l ME-a'Afa' Lisa'

Fe- SMn - 660 700 460 310

^. Fe0l0Nin - 600 670 310. 160

-	 Fe-121%in-0.2Ti 240	 3S0 570 670 260 120

Ase, Afe - Start and finish temperature for e > y transformation

on heating.

Asa' , Afa'	 - a' -> y on heating

Msa', Mfu,	 - y > a 	 on cooling.
1

3
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}	 Table III.	 Mechanical Properties of re-12Mn-O.2Ti Steel

Treatment	 Test	 Yield	 -2 Ultimate	 Uniform	 Total Reduction
KIcTemperature Stren g th MNIm	 ) Tensile	 Elongation(%) ElongationOO in

Strer_gth(M M 2) ivy ea M (MNm 3/2)

s

Solution-	 250C 600	 924	 6	 25 78 -
Annealed*

r

Solution-	 -I'VC 889	 135111	 25 5rr 63

Ann,=aIed

Reversion- -196°C 593	 1393	 19	 33 61 79**
Cycled

Two -Phase	 -196°C 952	 1358	 18	 33 62 70
Tempered

Cold-Work
end'	 -196°C 1179	 1543	 26	 38 66 100 r
Tempered A b

U
Solution-Annealed 900°C/211/IBQ.	 Reversion-Cycled	 Solution-Annealing plus 680°C15m(LP.Q, 5 cyc

o-Phase Tempered Solution-Annealing p t_us 500°C jBh /IrQ.
L- Goiel-^,brlced and	 et„nered 30% reduction at room temperature plus 600°C/4h/7Y-IQ.

k This row Of data was obtained Cront Pe-12Mn-0.2Ti-lt4o" alloy,
;tit	 t:4 vaa.ue.	 ASTM thickness 'requirement for Kic was not net.

to



Table IV.	 Prop erties of '.ot-rolled a?.d Temoered Fe-12Hn-0.M Steel.

Charw Imp act Hardness

i
t

C Treatment Energy at -196 ` C
j (N-m) (R.c)

I

? f Solution—Anrealed 8• 27	 -

i^
{ Above + Teu:perir_g 141 30

I

As-Rolled 1"900°C, 50%) 28 1 29

?j rr	 ► r	 _(1000°C,	 50%) 24 30

rr	 'r	 (2100°C,	 50%) 2$ 30

9000C Roll. + TE per no 30 31

1000°C	 rr -	 rr 26 32

11000C	 rr	 rr 24 31

{
All Tempering was conducted at 500% for 4hr.s followed by water-quenching.

E

q

#J

_..__..

Y.

... ..	 ,	 .i— ,	 a .-

i '. • F•c ^C 6'.'^ :^.`'4^' ...	 ..vim...
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4

Table V. Tensile -J?crties of Fe— S —Li Steel.

i
t

Yield tiltimate. Uniform. Total Reduction

Treatment Stren-th T ensile Elonc-ation: Elon-ation in
Stren.-t`! (%) (%) Area 2}(ril3m

Solution-.P:anealed 965 1041 4 4

Grain.-Refined 965 1055 26 7 70

i Grain-Refined 1053 32 15 54
and . Fe. taired Y 848

.i

s'r
r

f
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,t

F

i
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y

S

1	 J
G
ti<



53

FIGURE CAPTIONS

Fig. 1. DilatomeL specimen for measuring phase transformation

temperature.
s

Fig. 2. Schematic diagram of the ultra high vacuum chamber with in-situ

fracture device used for Auger electron spectroscopy (AES)

Fig. 3. Single notched specimen for Auger electron spectoscopy.

Fig. 4. Subsize tensile test specimen.	 j

t
.Fig. 5. Fracture toughness test specimen for K IC measurement,

Fig. 6. Dilation curve during continuous heating and cooling of an

Fe-12AIn-0.2Ti specimen.

Fig. 7. Fe-12_;.t-i--0.2'Fi. 	 Microstructures after solution-treatment

(9000C/2h/IBQ).

(a)	 Optical micrograph shwo.ing re4ystallized Y structure.

a
(b)	 TEM micrograph sho,:ing transformation substructures.

Fig,. 8. Fe-l2,Mn-0.21'i. 	 After solution-treatment (900 0C/2h/IBQ) .

Localized region of blocky martensites showing the association

of a' and c phase.
'r

(a)	 Selected area diffraction pattern.

(b)	 Analysis of (a) .

(c)	 Bright field image.

(d)	 Bark field image taken from an (1010)
E:

Fig. 9. Fe-12a,in-0.2T.	 Du,,--tile-brittle transition in solution-annealed

(900
0
C/2h/IBQ) specimens.

FiG. 10 Fe-12lin-0.M .	 SEM fractographs taken from Charpy specimens

tested (a) at room temperature and (b) at -1960C.

ORIGINAL PAGE

rc	 I
a^

x

OF POOR QUA

l;

E-E



Sn

Fig. 11. Fe-12Mn-0.Tfi. Variation of e phase on the (a) austen:itization	 ,. x

at different temperatures anu on the (b) reversion-cyclings

bettiveen 680 C and room.temperature. 	 Holding time at 680°C;

5 minutes.	 AS:	 As solution-annealed.	 Af:Afa.' temperature.

12. Fe-12Mn-0,2Ti.	 Ductile-brittle transition behaviours after

the reversion-cycling treatment (680°C/5mf IBQ, 5 cyles)

s

Fig.	 13. Fe-121ln-0.Hi..	 Reversion-cycled (680
0
C/Sm/IBQ, 5 cycles)

specimen.	 (a)	 Optical micrograph.	 (b) SEIM fractograph of a

Charpy specimen tested at -196°C.	 Same magnifications.

Fig.	 14. Fe-12Din-0.2Ti. 	 Engineering stress-strain curves obtained in

the tensile tests at -196 0C on differently heat-treated

specimens.	 Solution-annealing:	 900
0
C/2h/I£Q.	 Reversion-

0
cycling:	 680 C/Sm/IE;Q, S cycles.	 Two-phase tempering:

^.

r3
j

5000C/Sh/ISQ.

Fig.	 15. ` Fe-12%1n-O.M.	 Changes of structures and properties on tempering.
xJ

. (a)	 Vol. % of retained pn asE: ŝ ,	 (b)	 Hardness at room

temperature.	 (c)	 Charp} impact energy at -196°C 	 AS:	 As-

solution-annealed (9000C/2h/IBQ).

Fig.	 16. Fe-121Nln-0.M.	 Structure and property changes during the iso-

thermal treatment at 500°C.	 (a)	 Retained phases.-	 (b) ` 	Charpy

impact energy at -196°C C.

Fig.	 17. Fe-12Mn-0.2Ti.	 Structure_ after a heat treatment in the two-- to

phase (500
0
C/8h/IBQ).	 Note the severe directionality. j

aOptical micrograph.	 b	 TENT micro graph.

Fig.	 28. Fe-12,,Mn-0.21'i.	 TEM micros aph- of a specimen heat-treated for t'

an extended time in th e L o-phase (500°C/7 201i/IBS .	 (a)	 Bright- -'

field image.	 (b)	 Dart,-field contrast of rctai.ned phases (mostly

retained austenite) .
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Fig.	 19. Fe-SMn.	 Optical micro graph tal,:en from a specimen -tempered in

the two-phase region (500
0
C/8h/IBQ) .

Fig.	 20. Fe- 12Ntn-0.2Ti.	 Improver.:ents of ductile-brittle transition

i
behaviour by the two-phase heat treatment (5500C/Sh/IEQ) .

Fig. _ 21. Fe-12?1n-0. M.	 Change's of _structures and properties on cold-

korrcino followed by te;npering.	 (a) •	 Retained phases.

(b)	 Room temperature hardness	 (c)	 Charpy impact energy at

-196 C.	 AS:	 As- solution-annealed.	 CW:	 Cold--worked

(50% reJuction) at room temperature.

Fig..	 22. Fe-1211-1n-O.M.	 Cold- t,, orl:ed {50 0)' and annealed at different

temperatures.	 Variation of amount of retained phases measured

on different sections.- T:	 Transverse section.	 L:, Longitudinal

f section.	 V:	 Vertical section.

Fig.	 2.5. Fe-12ti1n-0.2Ti.	 TE'I micro graphs of (a) ' cold-worked (50

reduction' and (b) 	 annealed (S00°C/8h/1BQ) specimens.
g

Fig.	 24. Fe-12Mn-0.21'i._	 Improvement of impact resistance by a combi.nati.on

of cold-v:orking and annealing (600°C/4h/IBQ) in the teto-please

j region.

Fig. 25. Fe-12Mn-O.2Ti.	 SEMI	 fractog-raphs 'taken from fracture surfaces

' of Charpy specimens tested at-196°C.	 (a)	 Cold-worked (50%)

and ann,--aled (600
0
C/4h/IBQ .	 (b)	 Wo-phase tempered (500°C/ 'a

.
8h IB

Fig.' 26. Fe- 12Mn-0.2Ti. 	 Optical micrographs (b,d) and SE&I fractographs

(a,c,e)	 from Charpy bars tested at -196°C.	 (a)	 Solution

annealing plus two-phase teiaperino (S00C/8l1/IBQ) . 	 (h)	 Hot-

rolled (50%)	 at 9000C. 	 (c)	 Same as	 (b) .	 (d)	 Plot-rolled	 (SO')

k

at 900°C and tempered (500°C/4h/IBQ) . 	 (e)	 Same, as (d) .	 All

in the same mamiificauions. 1,,,
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Fig. 27. SEM fractographs taken from Charp), specimens tested at 196°C.

(a)	 Fe-SMa.	 (b) 1~e-IOJfn,. (c) F e - 1 21NIn- 0., 21'i . All solution-

annealed condition C900 0C/2h/IBQ) .

a

' Fig.	 25. Fe-12NIn-0.2'I'i.	 As solution-annealed (900°C/2h/ inQ) . 	 T E r, I
is

off micrographs showin g prior y-grain boundarics.

Fig.	 29. Fe-12t^Ln.	 AES spectra obtained from tiro different fracture}	 I. i

surfaces produced at different temperatures.

T-i Fig.	 30. ;7 e-12-N1n.	 SEM-EDAX analysis of particles in a region of dimpled 	
3

i
I' structure of a fracture surface. 	 Heat treatment:	 11000C/2h/IBQ.

j^ Fig.	 J-1. Fe-12Mn.	 Shift of ductile-brittle transition temperature by
I

the martensite embrittlement.

ff
^

4
#E Fig.	 32.

i

Fe-12,%In.	 AES spectrum obtained from an inter,ranular fracture

f,
surface of a martensite embrittled specimen.

{ Fig.	 33. Fe-S)1n.	 AFS spectrum obtained from a ductile fracture surface

produced at room temperature.

Fig.	 34. Fe-8,%In.	 AES spectra and SEA[	 fractographs	 obtained from brittle

fracture surfaces of (a) 	 the solution-treated and (b) 	 the
II#
1

martensite embrittled specimens, respectively.

1 14
Fig.	 35.g • Fe-12'Mn-O.M .	 Furnace-coolin g curve and the Char	 impacto	 pY	 actP

energy measured at -196°C. 	 Specimens were soaked at 1100
0
 for

2 hours followed by the furnace-cooling. 	 They were then taken

out from the furnace at the specified time and temperature and

air=cooled.

` Fig.	 36. Fe-12Mn-0.'2'fi. ' SENI fractoaraphs of Charpy specimens tested at

-196°C'.	 (a)	 Furnace-cooled 6 hours'/air-cooled. 	 (b)	 Furnace--
i	 1

cooled 11 hours/air-cooled.	 (c)	 Furnace-cooled 1.5 hours/air

i cooled;	
RIGINAL PAGE YQUALIT_OF 
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Fig. 37. Fe-12hin-0.211'i_ AES spectra obtained from the specimens heat

t treated: (a) 1100
0
C/2h/t Q. (b) 1100

0
C/21i/FC 12 h/AC.

(c) 11000C /2h/FC.

Fig. 38. Schematic • diagrain illustrating the schedule of thermal-cycling
i

grain refin,nent.	 AS:	 As solution-annealed (900°e	 C/21VIBQ).

i
Fig, 39. Fe-81\1n.	 Optical micrographs showin g the development of grain

{
size reduction by the thermal cycling treatment. 	 Refer to

r: Fig. 38 for the designation of each step.

1x' Fig._40. Fe-B%Fn.	 Changes of lot,; temperature (-196°C} mechanical properties

by grain size reduction and the retained austenite.	 AS:	 as-

j4 solution-annealed (900°C/2h /^',•Q).,` Retained austenite treatment:-

6000C/4h/},;Q,

I

Fig. 41. Fe-&,1n.	 Suppression of the ductile--brittle transition temperature

by the grain-refining and the r 	 'austenite treatment,

j,

" Fig. 42. Fe-8114n.	 Dependence of the ductile--brittle transition temperature k.

.	 :t
on the prior austenite grain size, d.

;k Fig. 43. Fe-8Mn.	 Fracture modes at -196°C, SENil .	 (a)	 As-solution-
i a

annealed, Charpy specimen.	 (b)	 The same as (a), tensile specimen.

(c) _ Grain- refined, Charpy specimen.	 (d)	 The same as , (c),

tensile specimen.f

Fig., 44. Fe-10Mn.	 Optical micrographs of (a)	 a solution'-annealed,.. r

specimen (900 C/2h/V,Q) and (b) a grain-refined specimen by the
'i

thermal -cyclings (730°C/2h/t,,Q + 650°C/2h/VQ, 2. cycles) .
t

{
f

Fig.  45. Fe-10Mn.	 Ductile-brittle transition bohavi.ours of the thermal-

cycled specimens. t.

Fig.	 46. Fe-10t4n.	 SEM fractographs of Charpy specimens tested at -196°C.

` (a)	 Solution-annealed (900°C/2h/WQ)	 ` (b)	 Grain-refined by the

f thermal-cyclings. A'"
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