220 research outputs found

    Exact Relativistic Two-Body Motion in Lineal Gravity

    Get PDF
    We consider the N-body problem in (1+1) dimensional lineal gravity. For 2 point masses (N=2) we obtain an exact solution for the relativistic motion. In the equal mass case we obtain an explicit expression for their proper separation as a function of their mutual proper time. Our solution gives the exact Hamiltonian to infinite order in the gravitational coupling constant.Comment: latex, 11 pages, 2 figures, final version to appear in Phys. Rev. Let

    Statistical Mechanics of Relativistic One-Dimensional Self-Gravitating Systems

    Get PDF
    We consider the statistical mechanics of a general relativistic one-dimensional self-gravitating system. The system consists of NN-particles coupled to lineal gravity and can be considered as a model of NN relativistically interacting sheets of uniform mass. The partition function and one-particle distitrubion functions are computed to leading order in 1/c1/c where cc is the speed of light; as cc\to\infty results for the non-relativistic one-dimensional self-gravitating system are recovered. We find that relativistic effects generally cause both position and momentum distribution functions to become more sharply peaked, and that the temperature of a relativistic gas is smaller than its non-relativistic counterpart at the same fixed energy. We consider the large-N limit of our results and compare this to the non-relativistic case.Comment: latex, 60 pages, 22 figure

    Dynamical N-body Equlibrium in Circular Dilaton Gravity

    Full text link
    We obtain a new exact equilibrium solution to the N-body problem in a one-dimensional relativistic self-gravitating system. It corresponds to an expanding/contracting spacetime of a circle with N bodies at equal proper separations from one another around the circle. Our methods are straightforwardly generalizable to other dilatonic theories of gravity, and provide a new class of solutions to further the study of (relativistic) one-dimensional self-gravitating systems.Comment: 4 pages, latex, reference added, minor changes in wordin

    Chaos in an Exact Relativistic 3-body Self-Gravitating System

    Get PDF
    We consider the problem of three body motion for a relativistic one-dimensional self-gravitating system. After describing the canonical decomposition of the action, we find an exact expression for the 3-body Hamiltonian, implicitly determined in terms of the four coordinate and momentum degrees of freedom in the system. Non-relativistically these degrees of freedom can be rewritten in terms of a single particle moving in a two-dimensional hexagonal well. We find the exact relativistic generalization of this potential, along with its post-Newtonian approximation. We then specialize to the equal mass case and numerically solve the equations of motion that follow from the Hamiltonian. Working in hexagonal-well coordinates, we obtaining orbits in both the hexagonal and 3-body representations of the system, and plot the Poincare sections as a function of the relativistic energy parameter η\eta . We find two broad categories of periodic and quasi-periodic motions that we refer to as the annulus and pretzel patterns, as well as a set of chaotic motions that appear in the region of phase-space between these two types. Despite the high degree of non-linearity in the relativistic system, we find that the the global structure of its phase space remains qualitatively the same as its non-relativisitic counterpart for all values of η\eta that we could study. However the relativistic system has a weaker symmetry and so its Poincare section develops an asymmetric distortion that increases with increasing η\eta . For the post-Newtonian system we find that it experiences a KAM breakdown for η0.26\eta \simeq 0.26: above which the near integrable regions degenerate into chaos.Comment: latex, 65 pages, 36 figures, high-resolution figures available upon reques

    Determining the date of diagnosis – is it a simple matter? The impact of different approaches to dating diagnosis on estimates of delayed care for ovarian cancer in UK primary care

    Get PDF
    Background Studies of cancer incidence and early management will increasingly draw on routine electronic patient records. However, data may be incomplete or inaccurate. We developed a generalisable strategy for investigating presenting symptoms and delays in diagnosis using ovarian cancer as an example. Methods The General Practice Research Database was used to investigate the time between first report of symptom and diagnosis of 344 women diagnosed with ovarian cancer between 01/06/2002 and 31/05/2008. Effects of possible inaccuracies in dating of diagnosis on the frequencies and timing of the most commonly reported symptoms were investigated using four increasingly inclusive definitions of first diagnosis/suspicion: 1. "Definite diagnosis" 2. "Ambiguous diagnosis" 3. "First treatment or complication suggesting pre-existing diagnosis", 4 "First relevant test or referral". Results The most commonly coded symptoms before a definite diagnosis of ovarian cancer, were abdominal pain (41%), urogenital problems(25%), abdominal distension (24%), constipation/change in bowel habits (23%) with 70% of cases reporting at least one of these. The median time between first reporting each of these symptoms and diagnosis was 13, 21, 9.5 and 8.5 weeks respectively. 19% had a code for definitions 2 or 3 prior to definite diagnosis and 73% a code for 4. However, the proportion with symptoms and the delays were similar for all four definitions except 4, where the median delay was 8, 8, 3, 10 and 0 weeks respectively. Conclusion Symptoms recorded in the General Practice Research Database are similar to those reported in the literature, although their frequency is lower than in studies based on self-report. Generalisable strategies for exploring the impact of recording practice on date of diagnosis in electronic patient records are recommended, and studies which date diagnoses in GP records need to present sensitivity analyses based on investigation, referral and diagnosis data. Free text information may be essential in obtaining accurate estimates of incidence, and for accurate dating of diagnoses

    Using the ecology model to describe the impact of asthma on patterns of health care

    Get PDF
    BACKGROUND: Asthma changes both the volume and patterns of healthcare of affected people. Most studies of asthma health care utilization have been done in selected insured populations or in a single site such as the emergency department. Asthma is an ambulatory sensitive care condition making it important to understand the relationship between care in all sites across the health service spectrum. Asthma is also more common in people with fewer economic resources making it important to include people across all types of insurance and no insurance categories. The ecology of medical care model may provide a useful framework to describe the use of health services in people with asthma compared to those without asthma and identify subgroups with apparent gaps in care. METHODS: This is a case-control study using the 1999 U.S. Medical Expenditure Panel Survey. Cases are school-aged children (6 to 17 years) and young adults (18 to 44 years) with self-reported asthma. Controls are from the same age groups who have no self-reported asthma. Descriptive analyses and risk ratios are placed within the ecology of medical care model and used to describe and compare the healthcare contact of cases and controls across multiple settings. RESULTS: In 1999, the presence of asthma significantly increased the likelihood of an ambulatory care visit by 20 to 30% and more than doubled the likelihood of making one or more visits to the emergency department (ED). Yet, 18.8% of children and 14.5% of adults with asthma (over a million Americans) had no ambulatory care visits for asthma. About one in 20 to 35 people with asthma (5.2% of children and 3.6% of adults) were seen in the ED or hospital but had no prior or follow-up ambulatory care visits. These Americans were more likely to be uninsured, have no usual source of care and live in metropolitan areas. CONCLUSION: The ecology model confirmed that having asthma changes the likelihood and pattern of care for Americans. More importantly, the ecology model identified a subgroup with asthma who sought only emergent or hospital services

    Equilibrium and dynamical properties of two dimensional self-gravitating systems

    Full text link
    A system of N classical particles in a 2D periodic cell interacting via long-range attractive potential is studied. For low energy density UU a collapsed phase is identified, while in the high energy limit the particles are homogeneously distributed. A phase transition from the collapsed to the homogeneous state occurs at critical energy U_c. A theoretical analysis within the canonical ensemble identifies such a transition as first order. But microcanonical simulations reveal a negative specific heat regime near UcU_c. The dynamical behaviour of the system is affected by this transition : below U_c anomalous diffusion is observed, while for U > U_c the motion of the particles is almost ballistic. In the collapsed phase, finite NN-effects act like a noise source of variance O(1/N), that restores normal diffusion on a time scale diverging with N. As a consequence, the asymptotic diffusion coefficient will also diverge algebraically with N and superdiffusion will be observable at any time in the limit N \to \infty. A Lyapunov analysis reveals that for U > U_c the maximal exponent \lambda decreases proportionally to N^{-1/3} and vanishes in the mean-field limit. For sufficiently small energy, in spite of a clear non ergodicity of the system, a common scaling law \lambda \propto U^{1/2} is observed for any initial conditions.Comment: 17 pages, Revtex - 15 PS Figs - Subimitted to Physical Review E - Two column version with included figures : less paper waste

    Effect of angular momentum on equilibrium properties of a self-gravitating system

    Full text link
    The microcanonical properties of a two dimensional system of N classical particles interacting via a smoothed Newtonian potential as a function of the total energy E and the total angular momentum L are discussed. In order to estimate suitable observables a numerical method based on an importance sampling algorithm is presented. The entropy surface shows a negative specific heat region at fixed L for all L. Observables probing the average mass distribution are used to understand the link between thermostatistical properties and the spatial distribution of particles. In order to define a phase in non-extensive system we introduce a more general observable than the one proposed by Gross and Votyakov [Eur. Phys. J. B:15, 115 (2000)]: the sign of the largest eigenvalue of the entropy surface curvature. At large E the gravitational system is in a homogeneous gas phase. At low E there are several collapse phases; at L=0 there is a single cluster phase and for L>0 there are several phases with 2 clusters. All these pure phases are separated by first order phase transition regions. The signal of critical behaviour emerges at different points of the parameter space (E,L). We also discuss the ensemble introduced in a recent pre-print by Klinko & Miller; this ensemble is the canonical analogue of the one at constant energy and constant angular momentum. We show that a huge loss of informations appears if we treat the system as a function of intensive parameters: besides the known non-equivalence at first order phase transitions, there exit in the microcanonical ensemble some values of the temperature and the angular velocity for which the corresponding canonical ensemble does not exist, i.e. the partition sum diverges.Comment: 17 pages, 11 figures, submitted to Phys. Rev.

    The health care information directive

    Get PDF
    BACKGROUND: Developments in information technology promise to revolutionise the delivery of health care by providing access to data in a timely and efficient way. Information technology also raises several important concerns about the confidentiality and privacy of health data. New and existing legislation in Europe and North America may make access to patient level data difficult with consequent impact on research and health surveillance. Although research is being conducted on technical solutions to protect the privacy of personal health information, there is very little research on ways to improve individuals power over their health information. This paper proposes a health care information directive, analogous to an advance directive, to facilitate choices regarding health information disclosure. RESULTS AND DISCUSSION: A health care information directive is described which creates a decision matrix that combines the ethical appropriateness of the use of personal health information with the sensitivity of the data. It creates a range of possibilities with in which individuals can choose to contribute health information with or without consent, or not to contribute information at all. CONCLUSION: The health care information directive may increase individuals understanding of the uses of health information and increase their willingness to contribute certain kinds of health information. Further refinement and evaluation of the directive is required
    corecore