283,424 research outputs found
Recommended from our members
Plasma fluctuations as Markovian noise
Noise theory is used to study the correlations of stationary Markovian fluctuations that are homogeneous and isotropic in space. The relaxation of the fluctuations is modeled by the diffusion equation. The spatial correlations of random fluctuations are modeled by the exponential decay. Based on these models, the temporal correlations of random fluctuations, such as the correlation function and the power spectrum, are calculated. We find that the diffusion process can give rise to the decay of the correlation function and a broad frequency spectrum of random fluctuations. We also find that the transport coefficients may be estimated by the correlation length and the correlation time. The theoretical results are compared with the observed plasma density fluctuations from the tokamak and helimak experiments.Physic
Evidence for A Parsec-scale Jet from The Galactic Center Black Hole: Interaction with Local Gas
Despite strong physical reasons that they should exist and decades of search,
jets from the Galactic Center Black Hole, Sgr A*, have not yet been
convincingly detected. Based on high-resolution Very Large Array images and
ultra-deep imaging-spectroscopic data produced by the Chandra X-ray
Observatory, we report new evidence for the existence of a parsec-scale jet
from Sgr A*, by associating a linear feature G359.944-0.052, previously
identified in X-ray images of the Galactic Center, with a radio shock front on
the Eastern Arm of the Sgr A West HII region. We show that the shock front can
be explained in terms of the impact of a jet having a sharp momentum peak along
the Galaxy's rotation axis, whereas G359.944-0.052, a quasi-steady feature with
a power-law spectrum, can be understood as synchrotron radiation from
shock-induced ultrarelativistic electrons cooling in a finite post-shock region
downstream along the jet path. Several interesting implications of the jet
properties are discussed.Comment: 33 pages, 7 figures; Accepted for publication in The Astrophysical
Journa
Barrier modification in sub-barrier fusion reactions using Wong formula with Skyrme forces in semiclassical formalism
We obtain the nuclear proximity potential by using semiclassical extended
Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), and use
it in the extended -summed Wong formula under frozen density
approximation. This method has the advantage of allowing the use of different
Skyrme forces, giving different barriers. Thus, for a given reaction, we could
choose a Skyrme force with proper barrier characteristics, not-requiring extra
``barrier lowering" or ``barrier narrowing" for a best fit to data. For the
Ni+Mo reaction, the -summed Wong formula, with effects of
deformations and orientations of nuclei included, fits the fusion-evaporation
cross section data exactly for the force GSkI, requiring additional barrier
modifications for forces SIII and SV. However, the same for other similar
reactions, like Ni+Ni, fits the data best for SIII force.
Hence, the barrier modification effects in -summed Wong expression
depends on the choice of Skyrme force in extended ETF method.Comment: INPC2010, Vancouver, CANAD
Robust Logic Gates and Realistic Quantum Computation
The composite rotation approach has been used to develop a range of robust
quantum logic gates, including single qubit gates and two qubit gates, which
are resistant to systematic errors in their implementation. Single qubit gates
based on the BB1 family of composite rotations have been experimentally
demonstrated in a variety of systems, but little study has been made of their
application in extended computations, and there has been no experimental study
of the corresponding robust two qubit gates to date. Here we describe an
application of robust gates to Nuclear Magnetic Resonance (NMR) studies of
approximate quantum counting. We find that the BB1 family of robust gates is
indeed useful, but that the related NB1, PB1, B4 and P4 families of tailored
logic gates are less useful than initially expected.Comment: 6 pages RevTex4 including 5 figures (3 low quality to save space).
Revised at request of referee and incorporting minor corrections and updates.
Now in press at Phys Rev
Signal processing in high speed OTDM networks
This paper presents the design and experimental results of an optical packet-switching testbed capable of performing message routing with single wavelength TDM packet bit rates as high as 100 Gb/s
- …