11,894 research outputs found

    Revised Born-Oppenheimer approach and a multielectron reprojection method for inelastic collisions

    Full text link
    The quantum reprojection method within the standard adiabatic Born-Oppenheimer approach is derived for multielectron collision systems. The method takes nonvanishing asymptotic nonadiabatic couplings into account and distinguishes asymptotic currents in molecular state and in atomic state channels, leading to physically consistent and reliable results. The method is demonstrated for the example of low-energy inelastic Li+Na collisions, for which the conventional application of the standard adiabatic Born-Oppenheimer approach fails and leads to paradoxes such as infinite inelastic cross sections

    Angular asymmetries as a probe for anomalous contributions to HZZ vertex at the LHC

    Full text link
    In this article, the prospects for studying the tensor structure of the HZZ vertex with the LHC experiments are presented. The structure of tensor couplings in Higgs di-boson decays is investigated by measuring the asymmetries and by studing the shapes of the final state angular distributions. The expected background contributions, detector resolution, and trigger and selection efficiencies are taken into account. The potential of the LHC experiments to discover sizeable non-Standard Model contributions to the HZZ vertex with 300  fb1300\;{\rm fb}^{-1} and 3000  fb13000\;{\rm fb}^{-1} is demonstrated.Comment: 9 pages, 8 figures; added 3 references for section 1; added 3 references, added missing unit GeV in Table III and 4 clarifying sentences to the tex

    Perturbation of a lattice spectral band by a nearby resonance

    Full text link
    A soluble model of weakly coupled "molecular" and "nuclear" Hamiltonians is studied in order to exhibit explicitly the mechanism leading to the enhancement of fusion probability in case of a narrow near-threshold nuclear resonance. We, further, consider molecular cells of this type being arranged in lattice structures. It is shown that if the real part of the narrow nuclear resonance lies within the molecular band generated by the intercellular interaction, an enhancement, proportional to the inverse width of the nuclear resonance, is to be expected.Comment: RevTeX, 2 figures within the file. In May 2000 the title changed and some minor corrections have been don

    Electroweak supersymmetric effects on high energy unpolarized and polarized single top production at LHC

    Full text link
    We consider various processes of single top production at LHC in the theoretical framework of the MSSM and examine the role of the supersymmetric electroweak one-loop corrections in a special moderately light SUSY scenario, in an initial parton-pair c.m. high energy range where a logarithmic asymptotic expansion of Sudakov type can be used. We show that the electroweak virtual effects are systematically large, definitely beyond the relative ten percent size, particularly for a final tHtH^- pair where a special enhancement is present. We show then in a qualitative way the kind of precision tests of the model that would be obtainable from accurate measurements of the energy distributions of the various cross sections and of the top polarization asymmetries.Comment: 30 pages, 9 figure

    Potential energy and dipole moment surfaces of H3- molecule

    Get PDF
    A new potential energy surface for the electronic ground state of the simplest triatomic anion H3- is determined for a large number of geometries. Its accuracy is improved at short and large distances compared to previous studies. The permanent dipole moment surface of the state is also computed for the first time. Nine vibrational levels of H3- and fourteen levels of D3- are obtained, bound by at most ~70 cm^{-1} and ~ 126 cm^{-1} respectively. These results should guide the spectroscopic search of the H3- ion in cold gases (below 100K) of molecular hydrogen in the presence of H3- ions

    Quenching of pairing gap at finite temperature in 184W

    Full text link
    We extract pairing gap in 184^{184}W at finite temperature for the first time from the experimental level densities of 183^{183}W, 184^{184}W, and 185^{185}W using "thermal" odd-even mass difference. We found the quenching of pairing gap near the critical temperature Tc=0.47T_c = 0.47 MeV in the BCS calculations. It is shown that the monopole pairing model with a deformed Woods-Saxon potential explains the reduction of the pairing correlation using the partition function with the number parity projection in the static path approximation plus random-phase approximation.Comment: 5 pages, 4 figures, accepted for publication in PR

    Thermodynamics of pairing in mesoscopic systems

    Full text link
    Using numerical and analytical methods implemented for different models we conduct a systematic study of thermodynamic properties of pairing correlation in mesoscopic nuclear systems. Various quantities are calculated and analyzed using the exact solution of pairing. An in-depth comparison of canonical, grand canonical, and microcanonical ensemble is conducted. The nature of the pairing phase transition in a small system is of a particular interest. We discuss the onset of discontinuity in the thermodynamic variables, fluctuations, and evolution of zeros of the canonical and grand canonical partition functions in the complex plane. The behavior of the Invariant Correlational Entropy is also studied in the transitional region of interest. The change in the character of the phase transition due to the presence of magnetic field is discussed along with studies of superconducting thermodynamics.Comment: 19 pages, 24 figure

    Four-quark spectroscopy within the hyperspherical formalism

    Get PDF
    We present a generalization of the hyperspherical harmonic formalism to study systems made of quarks and antiquarks of the same flavor. This generalization is based on the symmetrization of the NN-body wave function with respect to the symmetric group using the Barnea and Novoselsky algorithm. The formalism is applied to study four-quark systems by means of a constituent quark model successful in the description of the two- and three-quark systems. The results are compared to those obtained by means of variational approaches. Our analysis shows that four-quark systems with exotic 0+0^{+-} and non-exotic 2++2^{++} quantum numbers may be bound independently of the mass of the quark. 2+2^{+-} and 1+1^{+-} states become attractive only for larger mass of the quarks.Comment: 20 pages, 3 figure

    The supermultiplet of boundary conditions in supergravity

    Full text link
    Boundary conditions in supergravity on a manifold with boundary relate the bulk gravitino to the boundary supercurrent, and the normal derivative of the bulk metric to the boundary energy-momentum tensor. In the 3D N=1 setting, we show that these boundary conditions can be stated in a manifestly supersymmetric form. We identify the Extrinsic Curvature Tensor Multiplet, and show that boundary conditions set it equal to (a conjugate of) the boundary supercurrent multiplet. Extension of our results to higher-dimensional models (including the Randall-Sundrum and Horava-Witten scenarios) is discussed.Comment: 22 pages. JHEP format; references added; published versio

    Signals from R-parity violating top quark decays at LHC

    Full text link
    We evaluate the potential of the CERN LHC collider to observe rare decays of the top quark in channels involving R-parity violating (RPV) interactions. We stress the importance of calculating top quark production and decay simultaneously as a true 2->4 process. The process of tt-bar pair production followed by RPV decay of one of the top quarks is analyzed with fast detector simulation. We show that intermediate supersymmetric particles can be observed as resonances even if they are heavier than the top quark due to the significant off-shell top-quark mass effects. The approach where the top quark is produced on-mass-shell and then decays into 2- or 3-body final state would in general lead to incorrect kinematical distributions and rates. The rates of the 2 -> 4 process with top quark production and RPV 3-body decay depend on the total width of the heavy intermediate sfermion which could,therefore, be measured indirectly. We find that the LHC collider offers a unique potential to study rare top quark decays in the framework of supersymmetry with broken R-parity for branching fractions of RPV top decays as low as 10^{-6}Comment: 23 pages, 22 figure
    corecore