5,706 research outputs found

    Simulation test results for lift/cruise fan research and technology aircraft

    Get PDF
    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same

    Mathematical model for lift/cruise fan V/STOL aircraft simulator programming data

    Get PDF
    Simulation data are reported for the purpose of programming the flight simulator for advanced aircraft for tests of the lift/cruise fan V/STOL Research Technology Aircraft. These simulation tests are to provide insight into problem areas which are encountered in operational use of the aircraft. A mathematical model is defined in sufficient detail to represent all the necessary pertinent aircraft and system characteristics. The model includes the capability to simulate two basic versions of an aircraft propulsion system: (1) the gas coupled configuration which uses insulated air ducts to transmit power between gas generators and fans in the form of high energy engine exhaust and (2) the mechanically coupled power system which uses shafts, clutches, and gearboxes for power transmittal. Both configurations are modeled such that the simulation can include vertical as well as rolling takeoff and landing, hover, powered lift flight, aerodynamic flight, and the transition between powered lift and aerodynamic flight

    A Tunable Echelle Imager

    Get PDF
    We describe and evaluate a new instrument design called a Tunable Echelle Imager (TEI). In this instrument, the output from an imaging Fabry-Perot interferometer is cross-dispersed by a grism in one direction and dispersed by an echelle grating in the perpendicular direction. This forms a mosaic of different narrow-band images of the same field on a detector. It offers a distinct wavelength multiplex advantage over a traditional imaging Fabry-Perot device. Potential applications of the TEI include spectrophotometric imaging and OH-suppressed imaging by rejection.Comment: 11 pages, 12 figures, accepted by PAS

    NGC 300: an extremely faint, outer stellar disk observed to 10 scale lengths

    Full text link
    We have used the Gemini Multi-object Spectrograph (GMOS) on the Gemini South 8m telescope in exceptional conditions (0.6" FWHM seeing) to observe the outer stellar disk of the Sculptor group galaxy NGC 300 at two locations. At our point source detection threshold of r' = 27.0 (3-sigma) mag, we trace the stellar disk out to a radius of 24', or 2.2 R_25 where R_25 is the 25 mag/arcsec**2 isophotal radius. This corresponds to about 10 scale lengths in this low-luminosity spiral (M_B = -18.6), or about 14.4 kpc at a cepheid distance of 2.0 +/- 0.07 Mpc. The background galaxy counts are derived in the outermost field, and these are within 10% of the mean survey counts from both Hubble Deep Fields. The luminosity profile is well described by a nucleus plus a simple exponential profile out to 10 optical scale lengths. We reach an effective surface brightness of 30.5 mag/arcsec**2 (2-sigma) at 55% completeness which doubles the known radial extent of the optical disk. These levels are exceedingly faint in the sense that the equivalent surface brightness in B or V is about 32 mag/arcsec**2. We find no evidence for truncation of the stellar disk. Only star counts can be used to reliably trace the disk to such faint levels, since surface photometry is ultimately limited by nonstellar sources of radiation. In the Appendix, we derive the expected surface brightness of one such source: dust scattering of starlight in the outer disk.Comment: ApJ accepted -- 30 pages, 13 figures -- see ftp://www.aao.gov.au/pub/local/jbh/astro-ph/N300 for full resolution figures and preprin

    The Taurus Tunable Filter Field Galaxy Survey: Sample Selection and Narrowband Number-Counts

    Get PDF
    Recent evidence suggests a falling volume-averaged star-formation rate (SFR) over z ~ 1. It is not clear, however, the extent to which the selection of such samples influences the measurement of this quantity. Using the Taurus Tunable Filter (TTF) we have obtained an emission-line sample of faint star-forming galaxies over comparable lookback times: the TTF Field Galaxy Survey. By selecting through emission-lines, we are screening galaxies through a quantity that scales directly with star-formation activity for a given choice of initial mass function. The scanning narrowband technique furnishes a galaxy sample that differs from traditional broadband-selected surveys in both its volume-limited nature and selection of galaxies through emission-line flux. Three discrete wavelength intervals are covered, centered at H-alpha redshifts z = 0.08, 0.24 and 0.39. Galaxy characteristics are presented and comparisons made with existing surveys of both broadband and emission-line selection. When the number-counts of emission-line objects are compared with those expected on the basis of existing H-alpha surveys, we find an excess of ~ 3 times at the faintest limits. While these detections are yet to be independently confirmed, inspection of the stronger subsample of galaxies detected in both the line and continuum (line-on-continuum subsample; 13 %) is sufficient to support an excess population. This increase in the emission-line field population implies higher star-formation densities over z ~ 0.4. However, further study in the form of multi-object spectroscopic follow-up is necessary to quantify this and confirm the faintest detections in the sample.Comment: 48 pages, 12 figures. To appear in the Astrophysical Journal. An abridged version of the Abstract is shown her

    Suppression of the near-infrared OH night sky lines with fibre Bragg gratings - first results

    Get PDF
    The background noise between 1 and 1.8 microns in ground-based instruments is dominated by atmospheric emission from hydroxyl molecules. We have built and commissioned a new instrument, GNOSIS, which suppresses 103 OH doublets between 1.47 - 1.7 microns by a factor of ~1000 with a resolving power of ~10,000. We present the first results from the commissioning of GNOSIS using the IRIS2 spectrograph at the AAT. The combined throughput of the GNOSIS fore-optics, grating unit and relay optics is ~36 per cent, but this could be improved to ~46 per cent with a more optimal design. We measure strong suppression of the OH lines, confirming that OH suppression with fibre Bragg gratings will be a powerful technology for low resolution spectroscopy. The integrated OH suppressed background between 1.5 and 1.7 microns is reduced by a factor of 9 compared to a control spectrum using the same system without suppression. The potential of low resolution OH suppressed spectroscopy is illustrated with example observations. The GNOSIS background is dominated by detector dark current below 1.67 microns and by thermal emission above 1.67 microns. After subtracting these we detect an unidentified residual interline component of ~ 860 +/ 210 ph/s/m^2/micron/arcsec^2. This component is equally bright in the suppressed and control spectra. We have investigated the possible source of the interline component, but were unable to discriminate between a possible instrumental artifact and intrinsic atmospheric emission. Resolving the source of this emission is crucial for the design of fully optimised OH suppression spectrographs. The next generation OH suppression spectrograph will be focussed on resolving the source of the interline component, taking advantage of better optimisation for a FBG feed. We quantify the necessary improvements for an optimal OH suppressing fibre spectrograph design.Comment: Accepted for publication in MNRAS. 15 pages, 18 figure

    The Metal-Enriched Outer Disk of NGC 2915

    Full text link
    We present optical emission-line spectra for outlying HII regions in the extended neutral gas disk surrounding the blue compact dwarf galaxy NGC 2915. Using a combination of strong-line R23 and direct oxygen abundance measurements, we report a flat, possibly increasing, metallicity gradient out to 1.2 times the Holmberg radius. We find the outer-disk of NGC 2915 to be enriched to a metallicity of 0.4 Z_solar. An analysis of the metal yields shows that the outer disk of NGC 2915 is overabundant for its gas fraction, while the central star-foming core is similarly under-abundant for its gas fraction. Star formation rates derived from very deep ~14 ks GALEX FUV exposures indicate that the low-level of star formation observed at large radii is not sufficient to have produced the measured oxygen abundances at these galactocentric distances. We consider 3 plausible mechanisms that may explain the metal-enriched outer gaseous disk of NGC 2915: radial redistribution of centrally generated metals, strong galactic winds with subsequent fallback, and galaxy accretion. Our results have implications for the physical origin of the mass-metallicity relation for gas-rich dwarf galaxies.Comment: 11 pages, 4 figures, accepted to ApJ April 8th, 201

    The Wide Field Spectrograph (WiFeS)

    Full text link
    This paper describes the Wide Field Spectrograph (WiFeS) under construction at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) for the ANU 2.3m telescope at the Siding Spring Observatory. WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent thoughput, wavelength stability, spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320-950 nm wavelength region. It provides a 25x38 arcsec. field with 0.5 arcsec. sampling along each of twenty five 38X1 arcsec slitlets. The output format is optimized to match the 4096x4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of "interleaved nod-and-shuffle" will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions of 3000 and 7000 are provided. The full spectral range is covered in a single exposure at R=3000, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope atmosphere and detector) > 30% over a wide spectral range. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.Comment: Accepted for publication in Astrophysics & Space Science, 16 pages, 14 figure
    • 

    corecore