23,992 research outputs found
Quarkonia in Hamiltonian Light-Front QCD
A constituent parton picture of hadrons with logarithmic confinement
naturally arises in weak coupling light-front QCD. Confinement provides a mass
gap that allows the constituent picture to emerge. The effective renormalized
Hamiltonian is computed to , and used to study charmonium and
bottomonium. Radial and angular excitations can be used to fix the coupling
, the quark mass , and the cutoff . The resultant hyperfine
structure is very close to experiment.Comment: 9 pages, 1 latex figure included in the text. Published version (much
more reader-friendly); corrected error in self-energ
Note on restoring manifest rotational symmetry in hyperfine and fine structure in light-front QED
We study the part of the renormalized, cutoff QED light-front Hamiltonian
that does not change particle number. The Hamiltonian contains interactions
that must be treated in second-order bound state perturbation theory to obtain
hyperfine structure. We show that a simple unitary transformation leads
directly to the familiar Breit-Fermi spin-spin and tensor interactions, which
can be treated in degenerate first-order bound-state perturbation theory, thus
simplifying analytic light-front QED calculations. To the order in momenta we
need to consider, this transformation is equivalent to a Melosh rotation. We
also study how the similarity transformation affects spin-orbit interactions.Comment: 17 pages, latex fil
The NMR of High Temperature Superconductors without Anti-Ferromagnetic Spin Fluctuations
A microscopic theory for the NMR anomalies of the planar Cu and O sites in
superconducting La_1.85Sr_0.15CuO_4 is presented that quantitatively explains
the observations without the need to invoke anit-ferromagnetic spin
fluctuations on the planar Cu sites and its significant discrepancy with the
observed incommensurate neutron spin fluctuations. The theory is derived from
the recently published ab-initio band structure calculations that correct LDA
computations tendency to overestimate the self-coulomb repulsion for the
half-filled Cu d_x2-y2 orbital for these ionic systems. The new band structure
leads to two bands at the Fermi level with holes in the Cu d_z2 and apical O
p_z orbitals in addition to the standard Cu d_x2-y2 and planar O p_sigma
orbitals. This band structure is part of a new theory for the cuprates that
explains a broad range of experiments and is based upon the formation of Cooper
pairs comprised of a k up spin electron from one band and a -k down spin
electron from another band (Interband Pairing Model).Comment: In Press, Journal of Physical Chemistry. See also
http://www.firstprinciples.com. Minor changes to references and figure
readabilit
Are low-energy nuclear observables sensitive to high-energy phase shifts?
Conventional nucleon-nucleon potentials with strong short-range repulsion
require contributions from high-momentum wave function components even for
low-energy observables such as the deuteron binding energy. This can lead to
the misconception that reproducing high-energy phase shifts is important for
such observables. Interactions derived via the similarity renormalization group
decouple high-energy and low-energy physics while preserving the phase shifts
from the starting potential. They are used to show that high-momentum
components (and high-energy phase shifts) can be set to zero when using
low-momentum interactions, without losing information relevant for low-energy
observables.Comment: 13 pages, 5 figures; reference and acknowledgment adde
Implementing the Lean Sigma Framework in an Indian SME: a case study
Lean and Six Sigma are two widely acknowledged business process improvement strategies available to organisations today for achieving dramatic results in cost, quality and time by focusing on process performance. Lately, Lean and Six Sigma practitioners are integrating the two strategies into a more powerful and effective hybrid, addressing many of the weaknesses and retaining most of the strengths of each strategy. Lean Sigma combines the variability reduction tools and techniques from Six Sigma with the waste and non-value added elimination tools and techniques from Lean Manufacturing, to generate savings to the bottom-line of an organisation. This paper proposes a Lean Sigma framework to reduce the defect occurring in the final product (automobile accessories) manufactured by a die-casting process. The proposed framework integrates Lean tools (current state map, 5S System, and Total Productive Maintenance (TPM)) within Six Sigma DMAIC methodology to enhance the bottom-line results and win customer loyalty. Implementation of the proposed framework shows dramatic improvement in the key metrics (defect per unit (DPU), process capability index, mean and standard deviation of casting density, yield, and overall equipment effectiveness (OEE)) and a substantial financial savings is generated by the organisation
Operator Evolution via the Similarity Renormalization Group I: The Deuteron
Similarity Renormalization Group (SRG) flow equations can be used to
unitarily soften nuclear Hamiltonians by decoupling high-energy intermediate
state contributions to low-energy observables while maintaining the natural
hierarchy of many-body forces. Analogous flow equations can be used to
consistently evolve operators so that observables are unchanged if no
approximations are made. The question in practice is whether the advantages of
a softer Hamiltonian and less correlated wave functions might be offset by
complications in approximating and applying other operators. Here we examine
the properties of SRG-evolved operators, focusing in this paper on applications
to the deuteron but leading toward methods for few-body systems. We find the
advantageous features generally carry over to other operators with additional
simplifications in some cases from factorization of the unitary transformation
operator.Comment: 33 pages, 19 figures. Improved figures 17 and 18. Expanded comments
on OPE in tex
Operator Evolution via the Similarity Renormalization Group I: The Deuteron
Similarity Renormalization Group (SRG) flow equations can be used to
unitarily soften nuclear Hamiltonians by decoupling high-energy intermediate
state contributions to low-energy observables while maintaining the natural
hierarchy of many-body forces. Analogous flow equations can be used to
consistently evolve operators so that observables are unchanged if no
approximations are made. The question in practice is whether the advantages of
a softer Hamiltonian and less correlated wave functions might be offset by
complications in approximating and applying other operators. Here we examine
the properties of SRG-evolved operators, focusing in this paper on applications
to the deuteron but leading toward methods for few-body systems. We find the
advantageous features generally carry over to other operators with additional
simplifications in some cases from factorization of the unitary transformation
operator.Comment: 33 pages, 19 figures. Improved figures 17 and 18. Expanded comments
on OPE in tex
Initial bound state studies in light-front QCD
We present the first numerical QCD bound state calculation based on a
renormalization group-improved light-front Hamiltonian formalism. The QCD
Hamiltonian is determined to second order in the coupling, and it includes
two-body confining interactions. We make a momentum expansion, obtaining an
equal-time-like Schrodinger equation. This is solved for quark-antiquark
constituent states, and we obtain a set of self-consistent parameters by
fitting B meson spectra.Comment: 38 pages, latex, 5 latex figures include
- …