3,051 research outputs found

    Event-driven displays for manipulator control

    Get PDF
    The problem of constructing event-related information displays from multidimensional data generated by proximity, force-torque and tactile sensors integrated with the terminal device of a remotely controlled manipulator is considered. Event-driven displays are constructed by using appropriate algorithms acting on sensory data in real time. Event-driven information displays lessen the operator's workload and improve control performance. The paper describes and discusses several event-driven display examples that were implemented in the JPL teleoperator project, including a brief outline of the data handling system which drives the graphics display in real time. The paper concludes with a discussion of future plans to integrate event-driven displays with visual (TV) information

    Displays for supervisory control of manipulators

    Get PDF
    The problem of displaying information generated by sensors attached to the terminal device of a remotely controlled manipulator is considered. The sensors under consideration are proximity, force-torque, tactile and slip-page sensors. The paper describes and evaluates several examples that have been implemented in the JPL teleoperator project using audio and graphic displays of information generated by four proximity sensors attached to a manipulator end effector. Design schemes are also discussed related to the display of information generated by a six-dimensional force-torque sensor, a multipoint proportional tactile sensor, and a directional slippage sensor. The paper concludes with a discussion of future integrated displays of visual (TV) and handbased sensor information

    Ion implantation and low-temperature epitaxial regrowth of GaAs

    Get PDF
    Channeling and transmission electron microscopy have been used to investigate the parameters that govern the extent of damage in ion‐implanted GaAs and the crystal quality following capless furnace annealing at low temperature (∼400 °C). The implantation‐induced disorder showed a strong dependence on the implanted ion mass and on the substrate temperature during implantation. When the implantation produced a fully amorphous surface layer the main parameter governing the regrowth was the amorphous thickness. Formation of microtwins after annealing was observed when the initial amorphous layer was thicker than 400 Å. Also, the number of extended residual defects after annealing increased linearly with the initial amorphous thickness and extrapolation of that curve predicts good regrowth of very thin (<400 Å) GaAs amorphous layers produced by ion implantation. A model is presented to explain the observed features of the low‐temperature annealing of GaAs

    Epitaxial regrowth of thin amorphous GaAs layers

    Get PDF
    Channeling and transmission electron microscopy have been used to investigate the parameters that govern the crystal quality following capless funace annealing at low temperature (~ 400 °C) in ion-implanted GaAs. From the results obtained, we concluded that the crystal quality after annealing depends strongly on the thickness of the amorphous layer generated by ion implantation and the number of residual defects increases linearly with the thickness of the implanted layer. Single-crystal regrowth free of defects detectable by megaelectron volt He + channeling was achieved for a very thin amorphous layer (<~ 400 Å)

    Linear or Rotary Actuator Using Electromagnetic Driven Hammer as Prime Mover

    Get PDF
    We claim a hammer driven actuator that uses the fast-motion, low-force characteristics of an electro-magnetic or similar prime mover to develop kinetic energy that can be transformed via a friction interface to produce a higher-force, lower-speed linear or rotary actuator by using a hammering process to produce a series of individual steps. Such a system can be implemented using a voice-coil, electro-mechanical solenoid or similar prime mover. Where a typical actuator provides limited range of motion or low force, the range of motion of a linear or rotary impact driven motor can be configured to provide large displacements which are not limited by the characteristic dimensions of the prime mover

    Pharmacology of DB844, an orally active aza analogue of pafuramidine, in a monkey model of second stage human African trypanosomiasis

    Get PDF
    Novel drugs to treat human African trypanosomiasis (HAT) are still urgently needed despite the recent addition of nifurtimox-eflornithine combination therapy (NECT) to WHO Model Lists of Essential Medicines against second stage HAT, where parasites have invaded the central nervous system (CNS). The pharmacology of a potential orally available lead compound, N-methoxy-6-{5-[4-(N-methoxyamidino) phenyl]-furan-2-yl}-nicotinamidine (DB844), was evaluated in a vervet monkey model of second stage HAT, following promising results in mice. DB844 was administered orally to vervet monkeys, beginning 28 days post infection (DPI) with Trypanosoma brucei rhodesiense KETRI 2537. DB844 was absorbed and converted to the active metabolite 6-[5-(4-phenylamidinophenyl)-furanyl-2-yl]-nicotinamide (DB820), exhibiting plasma C(max) values of 430 and 190 nM for DB844 and DB820, respectively, after the 14th dose at 6 mg/kg qd. A 100-fold reduction in blood trypanosome counts was observed within 24 h of the third dose and, at the end of treatment evaluation performed four days post the last drug dose, trypanosomes were not detected in the blood or cerebrospinal fluid of any monkey. However, some animals relapsed during the 300 days of post treatment monitoring, resulting in a cure rate of 3/8 (37.5%) and 3/7 (42.9%) for the 5 mg/kg×10 days and the 6 mg/kg×14 days dose regimens respectively. These DB844 efficacy data were an improvement compared with pentamidine and pafuramidine both of which were previously shown to be non-curative in this model of CNS stage HAT. These data show that synthesis of novel diamidines with improved activity against CNS-stage HAT was possible

    Research on new applications for granulated rubber in concrete

    Get PDF

    Acute inhibition of MEK suppresses congenital melanocytic nevus syndrome in a murine model driven by activated NRAS and Wnt signaling

    Get PDF
    Congenital melanocytic nevus (CMN) syndrome is the association of pigmented melanocytic nevi with extra-cutaneous features, classically melanotic cells within the central nervous system, most frequently caused by a mutation of NRAS codon 61. This condition is currently untreatable and carries a significant risk of melanoma within the skin, brain, or leptomeninges. We have previously proposed a key role for Wnt signaling in the formation of melanocytic nevi, suggesting that activated Wnt signaling may be synergistic with activated NRAS in the pathogenesis of CMN syndrome. Some familial pre-disposition suggests a germ-line contribution to CMN syndrome, as does variability of neurological phenotypes in individuals with similar cutaneous phenotypes. Accordingly, we performed exome sequencing of germ-line DNA from patients with CMN to reveal rare or undescribed Wnt-signaling alterations. A murine model harboring activated NRASQ61K and Wnt signaling in melanocytes exhibited striking features of CMN syndrome, in particular neurological involvement. In the first model of treatment for this condition, these congenital, and previously assumed permanent, features were profoundly suppressed by acute post-natal treatment with a MEK inhibitor. These data suggest that activated NRAS and aberrant Wnt signaling conspire to drive CMN syndrome. Post-natal MEK inhibition is a potential candidate therapy for patients with this debilitating condition

    Recycled aggregates in concrete: a performance related approach

    Get PDF
    corecore