857 research outputs found

    Aldose Reductase Gene Polymorphisms and Diabetic Retinopathy Susceptibility

    Get PDF
    OBJECTIVE: Aldose reductase (ALR) is involved in diabetic microvascular damage via the polyol pathway. A recent meta-analysis found genetic variation in the ALR gene (AKR1B1) to be significantly associated with diabetic retinopathy (DR). We investigated the genetic association of AKR1B1 with DR. RESEARCH DESIGN AND METHODS: The study enrolled 909 individuals with diabetes. Participants were genotyped for an AKR1B1 (CA)n microsatellite and 14 tag single nucleotide polymorphisms, and ophthalmological assessment was performed. RESULTS: A total of 514 individuals were found to have DR. rs9640883 was significantly associated with DR (P = 0.0005). However, AKR1B1 variation was not independently associated with DR development after adjusting for relevant clinical parameters. rs9640883 was associated with duration of diabetes (P = 0.002). CONCLUSION: Many previous reports have failed to account for known risk factors for DR. The commonly reported association of AKR1B1 with DR may be due to an association of the gene with younger age at onset of diabetes.Sotoodeh Abhary, Kathryn P. Burdon, Kate J. Laurie, Stacey Thorpe, John Landers, Lucy Goold, Stewart Lake, Nikolai Petrovsky, and Jamie E. Crai

    Genetic association at the 9p21 glaucoma locus contributes to sex bias in normal-tension glaucoma

    Get PDF
    Purpose: Many genome-wide association studies have identified common single nucleotide polymorphisms (SNPs) at the 9p21 glaucoma locus (CDKN2B/CDKN2B-AS1) to be significantly associated with primary open-angle glaucoma (POAG), with association being stronger in normal tension glaucoma (NTG) and advanced glaucoma. We aimed to determine whether any observed differences in genetic association at the 9p21 locus are influenced by sex. Methods: Sex was assessed as a risk factor for POAG for 2241 glaucoma participants from the Australian and New Zealand Registry of Advanced Glaucoma, the Glaucoma Inheritance Study in Tasmania, and the Flinders Medical Centre. A total of 3176 controls were drawn from the Blue Mountains Eye Study and South Australia: 1523 advanced POAG and 718 nonadvanced POAG cases were genotyped along with 3176 controls. We selected 13 SNPs at the 9p21 locus, and association results were subanalyszd by sex for high-tension glaucoma (HTG) and NTG. Odds ratios (ORs) between sexes were compared. Results: A sex bias was present within advanced NTG cases (57.1% female versus 42.9% male, P = 0.0026). In all POAG cases, the strongest associated SNP at 9p21 was rs1063192 (OR, 1.43; P = 4 × 10⁻¹⁸). This association was stronger in females (OR, 1.5; P = 5 × 10⁻¹³) than in males (OR, 1.35; P = 7 × 10⁻⁷), with a statistically significant difference in female to male OR comparison (P = 1.0 × 10⁻²). An NTG to HTG subanalysis yielded statistically significant results only in females (OR, 1.63; P = 1.5 × 10⁻⁴) but not in males (OR, 1.15; P = 2.8 × 10⁻¹), with a statistically significant difference in female to male OR comparison (P = 1.4 × 10⁻⁴). Conclusions: This study demonstrated that female sex is a risk factor for developing advanced NTG. The stronger genetic signals at the 9p21 locus among females may contribute at least in part to the observed sex bias for NTG.Soo Khai Ng, Kathryn P. Burdon, Jude T. Fitzgerald, Tiger Zhou, Rhys Fogarty, Emmanuelle Souzeau, John Landers, Richard A. Mills, Robert J. Casson, Bronwyn Ridge, Stuart L. Graham, Alex W. Hewitt, David A. Mackey, Paul R. Healey, Jie Jin Wang, Paul Mitchell, Stuart MacGregor, and Jamie E. Crai

    SimSpin v2.6.0 -- Constructing synthetic spectral IFU cubes for comparison with observational surveys

    Full text link
    In this work, we present a methodology and a corresponding code-base for constructing mock integral field spectrograph (IFS) observations of simulated galaxies in a consistent and reproducible way. Such methods are necessary to improve the collaboration and comparison of observation and theory results, and accelerate our understanding of how the kinematics of galaxies evolve over time. This code, SimSpin, is an open-source package written in R, but also with an API interface such that the code can be interacted with in any coding language. Documentation and individual examples can be found at the open-source website connected to the online repository. SimSpin is already being utilised by international IFS collaborations, including SAMI and MAGPI, for generating comparable data sets from a diverse suite of cosmological hydrodynamical simulations.Comment: 20 pages, 15 figures, 2 tables. Accepted for publication in PASA. 30/08/2

    A practical approach to, diagnosis, assessment and management of idiopathic intracranial hypertension

    Get PDF
    Adult patients who present with papilloedema and symptoms of raised intracranial pressure need urgent multidisciplinary assessment including neuroimaging, to exclude life-threatening causes. Where there is no apparent underlying cause for the raised intracranial pressure, patients are considered to have idiopathic intracranial hypertension (IIH). The incidence of IIH is increasing in line with the global epidemic of obesity. There are controversial issues in its diagnosis and management. This paper gives a practical approach to assessing patients with papilloedema, its investigation and the subsequent management of patients with IIH

    Short Lag Times for Invasive Tropical Plants: Evidence from Experimental Plantings in Hawai'i

    Get PDF
    Background: The lag time of an invasion is the delay between arrival of an introduced species and its successful spread in a new area. To date, most estimates of lag times for plants have been indirect or anecdotal, and these estimates suggest that plant invasions are often characterized by lag times of 50 years or more. No general estimates are available of lag times for tropical plant invasions. Historical plantings and documentation were used to directly estimate lag times for tropical plant invasions in Hawai’i. Methodology/Principal Findings: Historical planting records for the Lyon Arboretum dating back to 1920 were examined to identify plants that have since become invasive pests in the Hawaiian Islands. Annual reports describing escape from plantings were then used to determine the lag times between initial plantings and earliest recorded spread of the successful invaders. Among 23 species that eventually became invasive pests, the average lag time between introduction and first evidence of spread was 14 years for woody plants and 5 years for herbaceous plants. Conclusions/Significance: These direct estimates of lag times are as much as an order of magnitude shorter than previous, indirect estimates, which were mainly based on temperate plants. Tropical invaders may have much shorter lag times than temperate species. A lack of direct and deliberate observations may have also inflated many previous lag time estimates. Although there have been documented cases of long lag times due to delayed arrival of a mutualist or environmenta

    Stable Coexistence of an Invasive Plant and Biocontrol Agent: A Parameterized Coupled Plant-Herbivore Model

    Get PDF
    1. Coupled plant-herbivore models, allowing feedback from plant to herbivore populations and vice versa, enable us to predict the impact of biocontrol agents on their target weed populations; however, they are rarely used in biocontrol studies. We describe the population biology of the invasive plant Echium plantagineum and the weevil Mogulones larvatus, a biocontrol agent, in Australia. In order to understand the dynamics of this plant-herbivore system, a series of coupled models of increasing complexity was developed. 2. A simple model was extended to include a seed bank, density-dependent plant fecundity, competition between weevil larvae and plant tolerance of herbivory, where below a threshold plants could compensate for larval feeding. Parameters and functional forms were estimated from experimental and field data. 3. The plant model, in the absence of the weevil, exhibited stable dynamics and provided a good quantitative description of field densities before the weevil was introduced. 4. In the coupled plant-herbivore model, density dependence in both plant fecundity and weevil larval competition stabilized the dynamics. Without larval competition the model was unstable, and plant tolerance of herbivory exacerbated this instability. This was a result of a time delay in plant response to herbivore densities. 5. Synthesis and applications. The coupled plant-herbivore model allowed us to predict whether stable coexistence of target plant and biocontrol agents was achievable at an acceptable level. We found this to be the case for the Echium-Mogulones system and believe that similar models would be of use when assessing new agents in this and other invasive plant biocontrol systems. Density dependence in new biocontrol agents should be assessed in order to determine whether it is likely to result in the aims of classical biocontrol: low, stable and sustainable populations of plant and herbivore. Further work should be done to characterize the strength of density dependence according to the niche occupied by the biocontrol agent, for example the strength and functional form of density dependence in stem borers may be quite different to that of defoliators

    Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater

    Get PDF
    Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release a multitude of micropollutants (MPs; i.e., synthetic chemicals) and microbes (including antibiotic-resistant bacteria) to receiving environments. This pollution may have pervasive impacts on biodiversity and ecosystem services. Viewed through multiple lenses of macroecological and ecotoxicological theory, we combined field, flume, and laboratory experiments to determine the effects of wastewater (WW) on microbial communities and organic-matter processing using a standardized decomposition assay. First, we conducted a mensurative experiment sampling 60 locations above and below WWTP discharges in 20 Swiss streams. Microbial respiration and decomposition rates were positively influenced by WW inputs via warming and nutrient enrichment, but with a notable exception: WW decreased the activation energy of decomposition, indicating a "slowing" of this fundamental ecosystem process in response to temperature. Second, next-generation sequencing indicated that microbial community structure below WWTPs was altered, with significant compositional turnover, reduced richness, and evidence of negative MP influences. Third, a series of flume experiments confirmed that although diluted WW generally has positive influences on microbial-mediated processes, the negative effects of MPs are "masked" by nutrient enrichment. Finally, transplant experiments suggested that WW-borne microbes enhance decomposition rates. Taken together, our results affirm the multiple stressor paradigm by showing that different aspects of WW (warming, nutrients, microbes, and MPs) jointly influence ecosystem functioning in complex ways. Increased respiration rates below WWTPs potentially generate ecosystem "disservices" via greater carbon evasion from streams and rivers. However, toxic MP effects may fundamentally alter ecological scaling relationships, indicating the need for a rapprochement between ecotoxicological and macroecological perspectives
    corecore