10 research outputs found
Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome
Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation
Development of an ICU discharge instrument predicting psychological morbidity : a multinational study
PURPOSE: To develop an instrument for use at ICU discharge for prediction of psychological problems in ICU survivors. METHODS: Multinational, prospective cohort study in ten general ICUs in secondary and tertiary care hospitals in Sweden, Denmark and the Netherlands. Adult patients with an ICU stay ≥ 12 h were eligible for inclusion. Patients in need of neurointensive care, with documented cognitive impairment, unable to communicate in the local language, without a home address or with more than one limitation of therapy were excluded. Primary outcome was psychological morbidity 3 months after ICU discharge, defined as Hospital Anxiety and Depression Scale (HADS) subscale score ≥ 11 or Post-traumatic Stress Symptoms Checklist-14 (PTSS-14) part B score > 45. RESULTS: A total of 572 patients were included and 78% of patients alive at follow-up responded to questionnaires. Twenty percent were classified as having psychological problems post-ICU. Of 18 potential risk factors, four were included in the final prediction model after multivariable logistic regression analysis: symptoms of depression [odds ratio (OR) 1.29, 95% confidence interval (CI) 1.10-1.50], traumatic memories (OR 1.44, 95% CI 1.13-1.82), lack of social support (OR 3.28, 95% CI 1.47-7.32) and age (age-dependent OR, peak risk at age 49-65 years). The area under the receiver operating characteristics curve (AUC) for the instrument was 0.76 (95% CI 0.70-0.81). CONCLUSIONS: We developed an instrument to predict individual patients' risk for psychological problems 3 months post-ICU, http://www.imm.ki.se/biostatistics/calculators/psychmorb/ . The instrument can be used for triage of patients for psychological ICU follow-up. TRIAL REGISTRATION: The study was registered at clinicaltrials.gov, NCT02679157
Growth and enzyme production during continuous cultures of a high amylase-producing variant of Aspergillus oryzae
Growth and product formation by a selected variant of Aspergillus oryzae showing high alpha-amylase production was studied in continuous cultivations carried out at six different specific growth rates, using glucose as the growth-limiting nutrient. The analysis of the steady-state data revealed that the variant and wild-type strains were similar with respect to glucose uptake system and stoichiometric coefficients. However, the variant was capable of maintaining an enzyme production as high as 40 FAUgDW-1h-1 at a dilution rate of 0.2 h-1, while the wild-type strain reached a maximum specific alpha-amylase production rate of 17 FAUgDW-1h-1 at a dilution rate of 0.1 h-1. Using a morphologically structured model originally proposed for the wild-type strain, it was possible to describe enzyme production, biomass formation and glucose consumption after modification of a few parameters to adjust the model to the characteristics of the selected variant