170 research outputs found

    Private Child Support: Current and Potential Impacts

    Get PDF
    This paper examines the effects of a number of methods for enhancing private child support collections: increasing the proportion of those children potentially eligible for child support who get child support awards; using a uniform standard for determining child support obligations; and collecting a greater percentage of current obligations. The paper also estimates the potential of all three methods used in combination to provide income to needy custodial families. The research demonstrates that the current private child support system falls far short of its potential to transfer income from noncustodial to custodial families. Although the use of a normative standard, improved collections, and extending child support to all those potentially eligible will greatly improve the economic circumstances of impoverished custodial families, private child support cannot be viewed as the sole answer for the economic plight of these families. Increased work opportunities and increased public support are also needed

    Strategies for Proteome-Wide Quantification of Glycosylation Macro- and Micro-Heterogeneity

    Get PDF
    Protein glycosylation governs key physiological and pathological processes in human cells. Aberrant glycosylation is thus closely associated with disease progression. Mass spectrometry (MS)-based glycoproteomics has emerged as an indispensable tool for investigating glycosylation changes in biological samples with high sensitivity. Following rapid improvements in methodologies for reliable intact glycopeptide identification, site-specific quantification of glycopeptide macro- and micro-heterogeneity at the proteome scale has become an urgent need for exploring glycosylation regulations. Here, we summarize recent advances in N- and O-linked glycoproteomic quantification strategies and discuss their limitations. We further describe a strategy to propagate MS data for multilayered glycopeptide quantification, enabling a more comprehensive examination of global and site-specific glycosylation changes. Altogether, we show how quantitative glycoproteomics methods explore glycosylation regulation in human diseases and promote the discovery of biomarkers and therapeutic targets

    The vascular bone marrow niche influences outcome in chronic myeloid leukemia via the E-selectin - SCL/TAL1-CD44 axis.

    No full text
    The endosteal bone marrow niche and vascular endothelial cells provide sanctuaries for leukemic cells. In murine chronic myeloid leukemia (CML) CD44 on leukemia cells and E-selectin on bone marrow endothelium are essential mediators for the engraftment of leukemic stem cells. We hypothesized that non-adhesion of CML-initiating cells to E-selectin on the bone marrow endothelium may lead to superior eradication of leukemic stem cells in CML after treatment with imatinib than imatinib alone. Indeed, here we show that treatment with the E-selectin inhibitor GMI-1271 in combination with imatinib prolongs survival of mice with CML via decreased contact time of leukemia cells with bone marrow endothelium. Non-adhesion of BCR-ABL1(+) cells leads to an increase of cell cycle progression and an increase of expression of the hematopoietic transcription factor and proto-oncogene Scl/Tal1 in leukemia-initiating cells. We implicate SCL/TAL1 as an indirect phosphorylation target of BCR-ABL1 and as a negative transcriptional regulator of CD44 expression. We show that increased SCL/TAL1 expression is associated with improved outcome in human CML. These data demonstrate the BCR-ABL1-specific, cell-intrinsic pathways leading to altered interactions with the vascular niche via the modulation of adhesion molecules - which could be exploited therapeutically in the future

    A streamlined pipeline for multiplexed quantitative site-specific N-glycoproteomics

    Get PDF
    Regulation of protein N-glycosylation is essential in human cells. However, large-scale, accurate, and site-specific quantification of glycosylation is still technically challenging. We here introduce SugarQuant, an integrated mass spectrometry-based pipeline comprising protein aggregation capture (PAC)-based sample preparation, multi-notch MS3 acquisition (Glyco-SPS-MS3) and a data-processing tool (GlycoBinder) that enables confident identification and quantification of intact glycopeptides in complex biological samples. PAC significantly reduces sample-handling time without compromising sensitivity. Glyco-SPS-MS3 combines high-resolution MS2 and MS3 scans, resulting in enhanced reporter signals of isobaric mass tags, improved detection of N-glycopeptide fragments, and lowered interference in multiplexed quantification. GlycoBinder enables streamlined processing of Glyco-SPS-MS3 data, followed by a two-step database search, which increases the identification rates of glycopeptides by 22% compared with conventional strategies. We apply SugarQuant to identify and quantify more than 5,000 unique glycoforms in Burkitt’s lymphoma cells, and determine site-specific glycosylation changes that occurred upon inhibition of fucosylation at high confidence

    Pretransplant assessment of human liver grafts by plasma lecithin: cholesterol acyltransferase (LCAT) activity in multiple organ donors.

    Get PDF
    In spite of the improved outcome of orthotopic liver transplantation (OLTx), primary graft nonfunction remains one of the life-threatening problems following OLTx. The purpose of this study was to evaluate plasma lecithin: cholesterol acyltransferase (LCAT) activity in multiple organ donors as a predictor of liver allograft viability prior to OLTx. Thirty-nine donors were studied during a 5-month period between April and August 1988. Allograft hepatectomy was performed using a rapid technique or its minor modification with hilar dissections, and the allografts were stored cold (4 degrees C) in University of Wisconsin (UW) solution. Early post-transplant allograft function was classified as good, fair, or poor, according to the highest SGOT, SGPT, and prothrombin time within 5 days following OLTx. Procurement records were reviewed to identify donor data, which included conventional liver function tests, duration of hospital stay, history of cardiac arrest, and graft ischemic time. Blood samples from the donors were drawn immediately prior to aortic crossclamp, and from these plasma LCAT activity was determined. Plasma LCAT activity of all donors was significantly lower than that of healthy controls (12.4 +/- 8.0 vs 39.2 +/- 13.3 micrograms/ml per hour, P less than 0.01). LCAT activity (16.4 +/- 8.3 micrograms/ml per hour) in donors of grafts with good function was significantly higher than that in those with fair (8.6 +/- 4.5 micrograms/ml per hour, P less than 0.01) or poor (7.3 +/- 2.4 micrograms/ml per hour, P less than 0.01) function.(ABSTRACT TRUNCATED AT 250 WORDS

    Elucidation of tonic and activated B-cell receptor signaling in Burkitt's lymphoma provides insights into regulation of cell survival.

    Get PDF
    Burkitt's lymphoma (BL) is a highly proliferative B-cell neoplasm and is treated with intensive chemotherapy that, because of its toxicity, is often not suitable for the elderly or for patients with endemic BL in developing countries. BL cell survival relies on signals transduced by B-cell antigen receptors (BCRs). However, tonic as well as activated BCR signaling networks and their relevance for targeted therapies in BL remain elusive. We have systematically characterized and compared tonic and activated BCR signaling in BL by quantitative phosphoproteomics to identify novel BCR effectors and potential drug targets. We identified and quantified ∼16,000 phospho-sites in BL cells. Among these sites, 909 were related to tonic BCR signaling, whereas 984 phospho-sites were regulated upon BCR engagement. The majority of the identified BCR signaling effectors have not been described in the context of B cells or lymphomas yet. Most of these newly identified BCR effectors are predicted to be involved in the regulation of kinases, transcription, and cytoskeleton dynamics. Although tonic and activated BCR signaling shared a considerable number of effector proteins, we identified distinct phosphorylation events in tonic BCR signaling. We investigated the functional relevance of some newly identified BCR effectors and show that ACTN4 and ARFGEF2, which have been described as regulators of membrane-trafficking and cytoskeleton-related processes, respectively, are crucial for BL cell survival. Thus, this study provides a comprehensive dataset for tonic and activated BCR signaling and identifies effector proteins that may be relevant for BL cell survival and thus may help to develop new BL treatments

    Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia

    Get PDF
    Approximately 20% of patients with acute myeloid leukaemia (AML) have a mutation in FMS-like-tyrosine-kinase-3 (FLT3). FLT3 is a trans-membrane receptor with a tyrosine kinase domain which, when activated, initiates a cascade of phosphorylated proteins including the SRC family of kinases. Recently our group and others have shown that pharmacologic inhibition and genetic knockdown of Bruton's tyrosine kinase (BTK) blocks AML blast proliferation, leukaemic cell adhesion to bone marrow stromal cells as well as migration of AML blasts. The anti-proliferative effects of BTK inhibition in human AML are mediated via inhibition of downstream NF-κB pro-survival signalling however the upstream drivers of BTK activation in human AML have yet to be fully characterised. Here we place the FLT3-ITD upstream of BTK in AML and show that the BTK inhibitor ibrutinib inhibits the survival and proliferation of FLT3-ITD primary AML blasts and AML cell lines. Furthermore ibrutinib inhibits the activation of downstream kinases including MAPK, AKT and STAT5. In addition we show that BTK RNAi inhibits proliferation of FLT3-ITD AML cells. Finally we report that ibrutinib reverses the cyto-protective role of BMSC on FLT3-ITD AML survival. These results argue for the evaluation of ibrutinib in patients with FLT3-ITD mutated AML

    Consequences of Cold-Ischemia Time on Primary Nonfunction and Patient and Graft Survival in Liver Transplantation: A Meta-Analysis

    Get PDF
    Introduction: The ability to preserve organs prior to transplant is essential to the organ allocation process. Objective: The purpose of this study is to describe the functional relationship between cold-ischemia time (CIT) and primary nonfunction (PNF), patient and graft survival in liver transplant. Methods: To identify relevant articles Medline, EMBASE and the Cochrane database, including the non-English literature identified in these databases, was searched from 1966 to April 2008. Two independent reviewers screened and extracted the data. CIT was analyzed both as a continuous variable and stratified by clinically relevant intervals. Nondichotomous variables were weighted by sample size. Percent variables were weighted by the inverse of the binomial variance. Results: Twenty-six studies met criteria. Functionally, PNF%=-6.678281+0.9134701*CIT Mean+0.1250879*(CIT Mean-9.89535) 2 - 0.0067663*(CIT Mean-9.89535) 3, r2=.625, p<.0001. Mean patient survival: 93 % (1 month), 88 % (3 months), 83 % (6 months) and 83 % (12 months). Mean graft survival: 85.9 % (1 month), 80.5 % (3 months), 78.1 % (6 months) and 76.8 % (12 months). Maximum patient and graft survival occurred with CITs between 7.5-12.5 hrs at each survival interval. PNF was also significantly correlated with ICU time, % first time grafts and % immunologic mismatches. Conclusion: The results of this work imply that CIT may be the most important pre-transplant information needed in the decision to accept an organ. © 2008 Stahl et al
    • …
    corecore