9,136 research outputs found

    Disproportionation Transition at Critical Interaction Strength: Na1/2_{1/2}CoO2_2

    Full text link
    Charge disproportionation (CD) and spin differentiation in Na1/2_{1/2}CoO2_2 are studied using the correlated band theory approach. The simultaneous CD and gap opening seen previously is followed through a first order charge disproportionation transition 2Co3.5+^{3.5+} \to Co3+^{3+}+Co4+^{4+}, whose ionic identities are connected more closely to spin (S=0, S=1/2 respectively) than to real charge. Disproportionation in the Co aga_g orbital is compensated by opposing charge rearrangement in other 3d orbitals. At the transition large and opposing discontinuities in the (all-electron) kinetic and potential energies are slightly more than balanced by a gain in correlation energy. The CD state is compared to characteristics of the observed charge-ordered insulating phase in Na1/2_{1/2}CoO2_2, suggesting the Coulomb repulsion value UU is concentration-dependent, with U(x=1/2)U(x=1/2)\simeq3.5 eV.Comment: 4 pages and 4 embedded figure

    Coherent control of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As

    Full text link
    We report single-color, time resolved magneto-optical measurements in ferromagnetic semiconductor (Ga,Mn)As. We demonstrate coherent optical control of the magnetization precession by applying two successive ultrashort laser pulses. The magnetic field and temperature dependent experiments reveal the collective Mn-moment nature of the oscillatory part of the time-dependent Kerr rotation, as well as contributions to the magneto-optical signal that are not connected with the magnetization dynamics.Comment: 6 pages, 3 figures, accepted in Applied Physics Letter

    Influence of antisymmetric exchange interaction on quantum tunneling of magnetization in a dimeric molecular magnet Mn6

    Get PDF
    We present magnetization measurements on the single molecule magnet Mn6, revealing various tunnel transitions inconsistent with a giant-spin description. We propose a dimeric model of the molecule with two coupled spins S=6, which involves crystal-field anisotropy, symmetric Heisenberg exchange interaction, and antisymmetric Dzyaloshinskii-Moriya exchange interaction. We show that this simplified model of the molecule explains the experimentally observed tunnel transitions and that the antisymmetric exchange interaction between the spins gives rise to tunneling processes between spin states belonging to different spin multiplets.Comment: 5 pages, 4 figure

    Heating of the molecular gas in the massive outflow of the local ultraluminous-infrared and radio-loud galaxy 4C12.50

    Full text link
    We present a comparison of the molecular gas properties in the outflow vs. in the ambient medium of the local prototype radio-loud and ultraluminous-infrared galaxy 4C12.50 (IRAS13451+1232), using new data from the IRAM Plateau de Bure interferometer and 30m telescope, and the Herschel space telescope. Previous H_2 (0-0) S(1) and S(2) observations with the Spitzer space telescope had indicated that the warm (~400K) molecular gas in 4C12.50 is made up of a 1.4(+-0.2)x10^8 M_sun ambient reservoir and a 5.2(+-1.7)x10^7 M_sun outflow. The new CO(1-0) data cube indicates that the corresponding cold (25K) H_2 gas mass is 1.0(+-0.1)x10^10 M_sun for the ambient medium and <1.3x10^8 M_sun for the outflow, when using a CO-intensity-to-H_2-mass conversion factor alpha of 0.8 M_sun /(K km/s pc^2). The combined mass outflow rate is high, 230-800 M_sun/yr, but the amount of gas that could escape the galaxy is low. A potential inflow of gas from a 3.3(+-0.3)x10^8 M_sun tidal tail could moderate any mass loss. The mass ratio of warm-to-cold molecular gas is >= 30 times higher in the outflow than in the ambient medium, indicating that a non-negligible fraction of the accelerated gas is heated to temperatures at which star formation is inefficient. This conclusion is robust against the use of different alpha factor values, and/or different warm gas tracers (H_2 vs. H_2 plus CO): with the CO-probed gas mass being at least 40 times lower at 400K than at 25K, the total warm-to-cold mass ratio is always lower in the ambient gas than in the entrained gas. Heating of the molecular gas could facilitate the detection of new outflows in distant galaxies by enhancing their emission in intermediate rotational number CO lines.Comment: A&A, in pres

    Laser-induced Precession of Magnetization in GaMnAs

    Full text link
    We report on the photo-induced precession of the ferromagnetically coupled Mn spins in (Ga,Mn)As, which is observed even with no external magnetic field applied. We concentrate on various experimental aspects of the time-resolved magneto-optical Kerr effect (TR-MOKE) technique that can be used to clarify the origin of the detected signals. We show that the measured data typically consist of several different contributions, among which only the oscillatory signal is directly connected with the ferromagnetic order in the sample.Comment: 4 pages, 5 figure

    Identifying dynamical systems with bifurcations from noisy partial observation

    Full text link
    Dynamical systems are used to model a variety of phenomena in which the bifurcation structure is a fundamental characteristic. Here we propose a statistical machine-learning approach to derive lowdimensional models that automatically integrate information in noisy time-series data from partial observations. The method is tested using artificial data generated from two cell-cycle control system models that exhibit different bifurcations, and the learned systems are shown to robustly inherit the bifurcation structure.Comment: 16 pages, 6 figure
    corecore