53 research outputs found

    Optimising Strategies for Plasmodium falciparum Malaria Elimination in Cambodia: Primaquine, Mass Drug Administration and Artemisinin Resistance

    Get PDF
    Malaria elimination requires a variety of approaches individually optimized for different transmission settings. A recent field study in an area of low seasonal transmission in South West Cambodia demonstrated dramatic reductions in malaria parasite prevalence following both mass drug administration (MDA) and high treatment coverage of symptomatic patients with artemisinin-piperaquine plus primaquine. This study employed multiple combined strategies and it was unclear what contribution each made to the reductions in malaria.A mathematical model fitted to the trial results was used to assess the effects of the various components of these interventions, design optimal elimination strategies, and explore their interactions with artemisinin resistance, which has recently been discovered in Western Cambodia. The modelling indicated that most of the initial reduction of P. falciparum malaria resulted from MDA with artemisinin-piperaquine. The subsequent continued decline and near elimination resulted mainly from high coverage with artemisinin-piperaquine treatment. Both these strategies were more effective with the addition of primaquine. MDA with artemisinin combination therapy (ACT) increased the proportion of artemisinin resistant infections, although much less than treatment of symptomatic cases with ACT, and this increase was slowed by adding primaquine. Artemisinin resistance reduced the effectiveness of interventions using ACT when the prevalence of resistance was very high. The main results were robust to assumptions about primaquine action, and immunity.The key messages of these modelling results for policy makers were: high coverage with ACT treatment can produce a long-term reduction in malaria whereas the impact of MDA is generally only short-term; primaquine enhances the effect of ACT in eliminating malaria and reduces the increase in proportion of artemisinin resistant infections; parasite prevalence is a better surveillance measure for elimination programmes than numbers of symptomatic cases; combinations of interventions are most effective and sustained efforts are crucial for successful elimination

    Effects of Ethanol and NAP on Cerebellar Expression of the Neural Cell Adhesion Molecule L1

    Get PDF
    The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs), and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7) rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10−12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression

    Spread of artemisinin resistance in Plasmodium falciparum malaria.

    Get PDF
    BACKGROUND: Artemisinin resistance in Plasmodium falciparum has emerged in Southeast Asia and now poses a threat to the control and elimination of malaria. Mapping the geographic extent of resistance is essential for planning containment and elimination strategies. METHODS: Between May 2011 and April 2013, we enrolled 1241 adults and children with acute, uncomplicated falciparum malaria in an open-label trial at 15 sites in 10 countries (7 in Asia and 3 in Africa). Patients received artesunate, administered orally at a daily dose of either 2 mg per kilogram of body weight per day or 4 mg per kilogram, for 3 days, followed by a standard 3-day course of artemisinin-based combination therapy. Parasite counts in peripheral-blood samples were measured every 6 hours, and the parasite clearance half-lives were determined. RESULTS: The median parasite clearance half-lives ranged from 1.9 hours in the Democratic Republic of Congo to 7.0 hours at the Thailand-Cambodia border. Slowly clearing infections (parasite clearance half-life >5 hours), strongly associated with single point mutations in the "propeller" region of the P. falciparum kelch protein gene on chromosome 13 (kelch13), were detected throughout mainland Southeast Asia from southern Vietnam to central Myanmar. The incidence of pretreatment and post-treatment gametocytemia was higher among patients with slow parasite clearance, suggesting greater potential for transmission. In western Cambodia, where artemisinin-based combination therapies are failing, the 6-day course of antimalarial therapy was associated with a cure rate of 97.7% (95% confidence interval, 90.9 to 99.4) at 42 days. CONCLUSIONS: Artemisinin resistance to P. falciparum, which is now prevalent across mainland Southeast Asia, is associated with mutations in kelch13. Prolonged courses of artemisinin-based combination therapies are currently efficacious in areas where standard 3-day treatments are failing. (Funded by the U.K. Department of International Development and others; ClinicalTrials.gov number, NCT01350856.)

    Imidazolopiperazines kill both rings and dormant rings in wild-type and K13 artemisinin-resistant Plasmodium falciparum in vitro

    No full text
    Artemisinin (ART) resistance has spread through Southeast Asia, posing a serious threat to the control and elimination of malaria. ART resistance has been associated with mutations in the Plasmodium falciparum kelch-13 (Pfk13) propeller domain. Phenotypically, ART resistance is defined as delayed parasite clearance in patients due to the reduced susceptibility of early ring-stage parasites to the active metabolite of ART dihydroartemisinin (DHA). Early rings can enter a state of quiescence upon DHA exposure and resume growth in its absence. These quiescent rings are referred to as dormant rings or DHA-pretreated rings (here called dormant rings). The imidazolopiperazines (IPZ) are a novel class of antimalarial drugs that have demonstrated efficacy in early clinical trials. Here, we characterized the stage of action of the IPZ GNF179 and evaluated its activity against rings and dormant rings in wild-type and ART-resistant parasites. Unlike DHA, GNF179 does not induce dormancy. We show that GNF179 is more rapidly cidal against schizonts than against ring and trophozoite stages. However, with 12 h of exposure, the compound effectively kills rings and dormant rings of both susceptible and ART-resistant parasites within 72 h. We further demonstrate that in combination with ART, GNF179 effectively prevents recrudescence of dormant rings, including those bearing pfk13 propeller mutations

    Asymptomatic natural human infections with the Simian malaria parasites plasmodium cynomolgi and plasmodium knowlesi

    No full text
    Background In Southeast Asia, Plasmodium knowlesi, a parasite of long-tailed macaques (Macaca fascicularis), is an important cause of human malaria. Plasmodium cynomolgi also commonly infects these monkeys, but only one naturally acquired symptomatic human case has been reported previously. Methods Malariometric studies involving 5422 subjects (aged 6 months to 65 years) were conducted in 23 villages in Pailin and Battambang, western Cambodia. Parasite detection and genotyping was conducted on blood samples, using high-volume quantitative PCR (uPCR). Results Asymptomatic malaria parasite infections were detected in 1361 of 14732 samples (9.2%). Asymptomatic infections with nonhuman primate malaria parasites were found in 21 individuals living close to forested areas; P. cynomolgi was found in 11, P. knowlesi was found in 8, and P. vivax and P. cynomolgi were both found in 2. Only 2 subjects were female, and 14 were men aged 20–40 years. Geometric mean parasite densities were 3604 parasites/mL in P. cynomolgi infections and 52488 parasites/mL in P. knowlesi infections. All P. cynomolgi isolates had wild-type dihydrofolate reductase genes, in contrast to the very high prevalence of mutations in the human malaria parasites. Asymptomatic reappearance of P. cynomolgi occurred in 2 subjects 3 months after the first infection. Conclusions Asymptomatic naturally acquired P. cynomolgi and P. knowlesi infections can both occur in humans

    Art and theatre for health in rural Cambodia

    No full text
    This article describes our experience using art and theatre to engage rural communities in western Cambodia to understand malaria and support malaria control and elimination. The project was a pilot science–arts initiative to supplement existing engagement activities conducted by local authorities. In 2016, the project was conducted in 20 villages, involved 300 community members and was attended by more than 8000 people. Key health messages were to use insecticide-treated bed-nets and repellents, febrile people should attend village malaria workers, and to raise awareness about the risk of forest-acquired malaria. Building on the experience and lessons learnt in the year prior, the 2017 project which was conducted in 15 villages involved 600 community members and attracted more than 12,000 people. In addition to the malaria theme, upon discussion with local health authorities, secondary theme (infant vaccination) was added to the 2017 project. We learnt the following lessons from our experience in Cambodia: involving local people including children from the beginning of the project and throughout the process is important; messages should be kept simple; it is necessary to take into consideration practical issues such as location and timing of the activities; and that the project should offer something unique to communities

    The numerical distributions of parasite densities in asymptomatic malaria

    No full text
    Background. Asymptomatic parasitemia is common even in areas of low seasonal malaria transmission, but the true proportion of the population infected has not been estimated previously because of the limited sensitivity of available detection methods. Methods. Cross-sectional malaria surveys were conducted in areas of low seasonal transmission on the Northwestern Thailand-Myanmar border and in Western Cambodia. Using an ultra- sensitive PCR DNA quantitation method (uPCR: limit of accurate detection 22 parasites/mL) parasite density distributions for Plasmodium falciparum and Plasmodium vivax were characterised and the proportions of undetected infections imputed. Results. The prevalence of asymptomatic malaria by uPCR was 19.9% (988 of 4,975 people tested). Both P. vivax and P. falciparum density distributions were unimodal and log normally distributed with modal values well within the quantifiable range. The estimated proportions of all parasitemic individuals identified by uPCR were over 70% for P. falciparum and over 85% for P. vivax. Predicted proportions overall were 83% P. vivax, 13% P. falciparum and 4% mixed. Geometric mean parasite densities were similar; P. vivax: 5,601/mL and P. falciparum: 5,158/mL. Conclusions. This uPCR method identified most infected individuals in malaria endemic areas. Malaria parasitemias persist in humans at levels which optimise the probability of generating transmissible gametocyte densities without causing illness
    corecore