593 research outputs found
Towards Retinoid Therapy for Alzheimer’s Disease
Alzheimer’s disease(AD) is associated with a variety of pathophysiological features, including amyloid plaques, inflammation, immunological changes, cell death and regeneration processes, altered neurotransmission, and age-related changes. Retinoic acid receptors (RARs) and retinoids are relevant to all of these. Here we review the pathology, pharmacology, and biochemistry of AD in relation to RARs and retinoids, and we suggest that retinoids are candidate drugs for treatment of AD
Glucocorticoid-induced TNF receptor-triggered T cells are key modulators for survival/death of neural stem/progenitor cells induced by ischemic stroke
Increasing evidences show that immune response affects the reparative mechanisms in injured brain. Recently, we have demonstrated that CD4+T cells serve as negative modulators in neurogenesis after stroke, but the mechanistic detail remains unclear. Glucocorticoid-induced tumor necrosis factor (TNF) receptor (GITR), a multifaceted regulator of immunity belonging to the TNF receptor superfamily, is expressed on activated CD4+T cells. Herein, we show, by using a murine model of cortical infarction, that GITR triggering on CD4+T cells increases poststroke inflammation and decreases the number of neural stem/progenitor cells induced by ischemia (iNSPCs). CD4+GITR+T cells were preferentially accumulated at the postischemic cortex, and mice treated with GITR-stimulating antibody augmented poststroke inflammatory responses with enhanced apoptosis of iNSPCs. In contrast, blocking the GITR–GITR ligand (GITRL) interaction by GITR–Fc fusion protein abrogated inflammation and suppressed apoptosis of iNSPCs. Moreover, GITR-stimulated T cells caused apoptosis of the iNSPCs, and administration of GITR-stimulated T cells to poststroke severe combined immunodeficient mice significantly reduced iNSPC number compared with that of non-stimulated T cells. These observations indicate that among the CD4+T cells, GITR+CD4+T cells are major deteriorating modulators of poststroke neurogenesis. This suggests that blockade of the GITR–GITRL interaction may be a novel immune-based therapy in stroke
Nuclear matter effects on production in asymmetric Cu+Au collisions at = 200 GeV
We report on production from asymmetric Cu+Au heavy-ion collisions
at =200 GeV at the Relativistic Heavy Ion Collider at both
forward (Cu-going direction) and backward (Au-going direction) rapidities. The
nuclear modification of yields in CuAu collisions in the Au-going
direction is found to be comparable to that in AuAu collisions when plotted
as a function of the number of participating nucleons. In the Cu-going
direction, production shows a stronger suppression. This difference is
comparable in magnitude and has the same sign as the difference expected from
shadowing effects due to stronger low- gluon suppression in the larger Au
nucleus. The relative suppression is opposite to that expected from hot nuclear
matter dissociation, since a higher energy density is expected in the Au-going
direction.Comment: 349 authors, 10 pages, 4 figures, and 4 tables. Submitted to Phys.
Rev. C. For v2, fixed LaTeX error in 3rd-to-last sentence. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
L\'evy-stable two-pion Bose-Einstein correlations in GeV AuAu collisions
We present a detailed measurement of charged two-pion correlation functions
in 0%-30% centrality GeV AuAu collisions by the
PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well
described by Bose-Einstein correlation functions stemming from L\'evy-stable
source distributions. Using a fine transverse momentum binning, we extract the
correlation strength parameter , the L\'evy index of stability
and the L\'evy length scale parameter as a function of average
transverse mass of the pair . We find that the positively and the
negatively charged pion pairs yield consistent results, and their correlation
functions are represented, within uncertainties, by the same L\'evy-stable
source functions. The measurements indicate a decrease of the
strength of the correlations at low . The L\'evy length scale parameter
decreases with increasing , following a hydrodynamically
predicted type of scaling behavior. The values of the L\'evy index of stability
are found to be significantly lower than the Gaussian case of
, but also significantly larger than the conjectured value that may
characterize the critical point of a second-order quark-hadron phase
transition.Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v2 is version
accepted for publication in Phys. Rev. C. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Cross Section and Transverse Single-Spin Asymmetry of Mesons in Collisions at GeV at Forward Rapidity
We present a measurement of the cross section and transverse single-spin
asymmetry () for mesons at large pseudorapidity from
~GeV collisions. The measured cross section for
~GeV/ and is well described by a
next-to-leading-order perturbative-quantum-chromodynamics calculation. The
asymmetries have been measured as a function of Feynman- () from
, as well as transverse momentum () from
~GeV/. The asymmetry averaged over positive is
. The results are consistent with prior
transverse single-spin measurements of forward and mesons at
various energies in overlapping ranges. Comparison of different particle
species can help to determine the origin of the large observed asymmetries in
collisions.Comment: 484 authors, 13 pages, 11 figures, 4 tables, 2008 data. v2 is version
accepted by Phys. Rev. D. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be)publicly
available at http://www.phenix.bnl.gov/papers.htm
meson production in Au collisions at GeV
The PHENIX experiment has measured meson production in Au
collisions at GeV using the dimuon and dielectron decay
channels. The meson is measured in the forward (backward) -going
(Au-going) direction, () in the transverse-momentum
() range from 1--7 GeV/, and at midrapidity in the
range below 7 GeV/. The meson invariant yields and
nuclear-modification factors as a function of , rapidity, and centrality
are reported. An enhancement of meson production is observed in the
Au-going direction, while suppression is seen in the -going direction, and
no modification is observed at midrapidity relative to the yield in
collisions scaled by the number of binary collisions. Similar behavior was
previously observed for inclusive charged hadrons and open heavy flavor
indicating similar cold-nuclear-matter effects.Comment: 484 authors, 16 pages, 12 figures, 6 tables. v1 is the version
accepted for publication in Phys. Rev. C. Data tables for the points plotted
in the figures are given in the paper itsel
- …