6,419 research outputs found

    [TiII] and [NiII] emission from the strontium filament of eta Carinae

    Full text link
    We study the nature of the [TiII] and [NiII] emission from the so-called strontium filament found in the ejecta of eta Carinae. To this purpose we employ multilevel models of the TiII and NiII systems which are used to investigate the physical condition of the filament and the excitation mechanisms of the observed lines. For the TiII ion, for which no atomic data was previously available, we carry out ab initio calculations of radiative transition rates and electron impact excitation rate coefficients. It is found that the observed spectrum is consistent with the lines being excited in a mostly neutral region with an electron density of the order of 10710^7 cm−3^{-3} and a temperature around 6000 K. In analyzing three observations with different slit orientations recorded between March~2000 and November~2001 we find line ratios that change among various observations, in a way consistent with changes of up to an order of magnitude in the strength of the continuum radiation field. These changes result from different samplings of the extended filament, due to the different slit orientations used for each observation, and yield clues on the spatial extent and optical depth of the filament. The observed emission indicates a large Ti/Ni abundance ratio relative to solar abundances. It is suggested that the observed high Ti/Ni ratio in gas is caused by dust-gas fractionation processes and does not reflect the absolute Ti/Ni ratio in the ejecta of \etacar. We study the condensation chemistry of Ti, Ni and Fe within the filament and suggest that the observed gas phase overabundance of TiComment: 14 paginas, 12 figure

    The HATNet and HATSouth Exoplanet Surveys

    Full text link
    The Hungarian-made Automated Telescope Network (HATNet) has been in operation since 2003, with the key science goal being the discovery and accurate characterization of transiting extrasolar planets (TEPs) around bright stars. Using six small, 11\,cm\ aperture, fully automated telescopes in Arizona and Hawaii, as of 2017 March, it has discovered and accurately characterized 67 such objects. The HATSouth network of telescopes has been in operation since 2009, using slightly larger, 18\,cm diameter optical tubes. It was the first global network of telescopes using identical instrumentation. With three premier sites spread out in longitude (Chile, Namibia, Australia), the HATSouth network permits round-the-clock observations of a 128 square arcdegree swath of the sky at any given time, weather permitting. As of this writing, HATSouth has discovered 36 transiting exoplanets. Many of the altogether ~100 HAT and HATSouth exoplanets were the first of their kind. They have been important contributors to the rapidly developing field of exoplanets, motivating and influencing observational techniques, theoretical studies, and also actively shaping future instrumentation for the detection and characterization of such objects.Comment: Invited review chapter, accepted for publication in "Handbook of Exoplanets", edited by H.J. Deeg and J.A. Belmonte, Springer Reference Work

    Partial Covering Arrays: Algorithms and Asymptotics

    Full text link
    A covering array CA(N;t,k,v)\mathsf{CA}(N;t,k,v) is an N×kN\times k array with entries in {1,2,
,v}\{1, 2, \ldots , v\}, for which every N×tN\times t subarray contains each tt-tuple of {1,2,
,v}t\{1, 2, \ldots , v\}^t among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound CAN(t,k,v)\mathsf{CAN}(t,k,v), the minimum number NN of rows of a CA(N;t,k,v)\mathsf{CA}(N;t,k,v). The well known bound CAN(t,k,v)=O((t−1)vtlog⁥k)\mathsf{CAN}(t,k,v)=O((t-1)v^t\log k) is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set {1,2,
,v}t\{1, 2, \ldots , v\}^t need only be contained among the rows of at least (1−ϔ)(kt)(1-\epsilon)\binom{k}{t} of the N×tN\times t subarrays and (2) the rows of every N×tN\times t subarray need only contain a (large) subset of {1,2,
,v}t\{1, 2, \ldots , v\}^t. In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time

    The Anti-Coincidence Detector for the GLAST Large Area Telescope

    Get PDF
    This paper describes the design, fabrication and testing of the Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT). The ACD is LAT first-level defense against the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector, requiring a total active area of ~8.3 square meters. The ACD detector utilizes plastic scintillator tiles with wave-length shifting fiber readout. In order to suppress self-veto by shower particles at high gamma-ray energies, the ACD is segmented into 89 tiles of different sizes. The overall ACD efficiency for detection of singly charged relativistic particles entering the tracking detector from the top or sides of the LAT exceeds the required 0.9997.Comment: 33 pages, 19 figure

    On the frequency and remnants of Hypernovae

    Full text link
    Under the hypothesis that some fraction of massive stellar core collapses give rise to unusually energetic events, termed hypernovae, I examine the required rates assuming some fraction of such events yield gamma ray bursts. I then discuss evidence from studies of pulsars and r-process nucleosynthesis that independently suggests the existence of a class of unusually energetic events. Finally I describe a scenario which links these different lines of evidence as supporting the hypernova hypothesis.Comment: TeX, To appear in ApJ Letter

    The LWA1 Radio Telescope

    Full text link
    LWA1 is a new radio telescope operating in the frequency range 10-88 MHz, located in central New Mexico. The telescope consists of 258 pairs of dipole-type antennas whose outputs are individually digitized and formed into beams. Simultaneously, signals from all dipoles can be recorded using one of the instrument's "all dipoles" modes, facilitating all-sky imaging. Notable features of the instrument include high intrinsic sensitivity (about 6 kJy zenith system equivalent flux density), large instantaneous bandwidth (up to 78 MHz), and 4 independently-steerable beams utilizing digital "true time delay" beamforming. This paper summarizes the design of LWA1 and its performance as determined in commissioning experiments. We describe the method currently in use for array calibration, and report on measurements of sensitivity and beamwidth.Comment: 9 pages, 14 figures, accepted by IEEE Trans. Antennas & Propagation. Various minor changes from previous versio

    People See Political Opponents as More Stupid Than Evil

    Get PDF
    Affective polarization is a rising threat to political discourse and democracy. Public figures have expressed that "conservatives think liberals are stupid, and liberals think conservatives are evil." However, four studies (N = 1,660)-including a representative sample-reveal evidence that both sides view political opponents as more unintelligent than immoral. Perceiving the other side as "more stupid than evil" occurs both in general judgments (Studies 1, 3, and 4) and regarding specific issues (Study 2). Study 4 also examines "meta-perceptions" of how Democrats and Republicans disparage one another, revealing that people correctly perceive that both Democrats and Republicans see each other as more unintelligent than immoral, although they exaggerate the extent of this negativity. These studies clarify the way everyday partisans view each other, an important step in designing effective interventions to reduce political animosity

    General technique of calculating drift velocity and diffusion coefficient in arbitrary periodic systems

    Full text link
    We develop a practical method of computing the stationary drift velocity V and the diffusion coefficient D of a particle (or a few particles) in a periodic system with arbitrary transition rates. We solve this problem both in a physically relevant continuous-time approach as well as for models with discrete-time kinetics, which are often used in computer simulations. We show that both approaches yield the same value of the drift, but the difference between the diffusion coefficients obtained in each of them equals V*V/2. Generalization to spaces of arbitrary dimension and several applications of the method are also presented.Comment: 12 pages + 2 figures, RevTeX. Submitted to J. Phys. A: Math. Ge

    Branching of the Falkner-Skan solutions for λ < 0

    Get PDF
    The Falkner-Skan equation f'" + ff" + λ(1 - f'^2) = 0, f(0) = f'(0) = 0, is discussed for λ < 0. Two types of problems, one with f'(∞) = 1 and another with f'(∞) = -1, are considered. For λ = 0- a close relation between these two types is found. For λ < -1 both types of problem allow multiple solutions which may be distinguished by an integer N denoting the number of zeros of f' - 1. The numerical results indicate that the solution branches with f'(∞) = 1 and those with f'(∞) = -1 tend towards a common limit curve as N increases indefinitely. Finally a periodic solution, existing for λ < -1, is presented.

    High-Energy Neutrinos from Photomeson Processes in Blazars

    Get PDF
    An important radiation field for photomeson neutrino production in blazars is shown to be the radiation field external to the jet. Assuming that protons are accelerated with the same power as electrons and injected with a -2 number spectrum, we predict that km^2 neutrino telescopes will detect about 1-to-several neutrinos per year from flat spectrum radio quasars (FSRQs) such as 3C 279. The escaping high-energy neutron and photon beams transport inner jet energy far from the black-hole engine, and could power synchrotron X-ray jets and FR II hot spots and lobes.Comment: revised paper (minor revisions), accepted for publication in PR
    • 

    corecore