435 research outputs found

    Nonchiral Edge States at the Chiral Metal Insulator Transition in Disordered Quantum Hall Wires

    Full text link
    The quantum phase diagram of disordered wires in a strong magnetic field is studied as a function of wire width and energy. The two-terminal conductance shows zero-temperature discontinuous transitions between exactly integer plateau values and zero. In the vicinity of this transition, the chiral metal-insulator transition (CMIT), states are identified that are superpositions of edge states with opposite chirality. The bulk contribution of such states is found to decrease with increasing wire width. Based on exact diagonalization results for the eigenstates and their participation ratios, we conclude that these states are characteristic for the CMIT, have the appearance of nonchiral edges states, and are thereby distinguishable from other states in the quantum Hall wire, namely, extended edge states, two-dimensionally (2D) localized, quasi-1D localized, and 2D critical states.Comment: replaced with revised versio

    Analytical Results for Random Band Matrices with Preferential Basis

    Full text link
    Using the supersymmetry method we analytically calculate the local density of states, the localiztion length, the generalized inverse participation ratios, and the distribution function of eigenvector components for the superposition of a random band matrix with a strongly fluctuating diagonal matrix. In this way we extend previously known results for ordinary band matrices to the class of random band matrices with preferential basis. Our analytical results are in good agreement with (but more general than) recent numerical findings by Jacquod and Shepelyansky.Comment: 8 pages RevTex and 1 Figure, both uuencode

    Phase Transition in a Model with Non-Compact Symmetry on Bethe Lattice and the Replica Limit

    Full text link
    We solve O(n,1)O(n,1) nonlinear vector model on Bethe lattice and show that it exhibits a transition from ordered to disordered state for 0n<10 \leq n < 1. If the replica limit n0n\to 0 is taken carefully, the model is shown to reduce to the corresponding supersymmetric model. The latter was introduced by Zirnbauer as a toy model for the Anderson localization transition. We argue thus that the non-compact replica models describe correctly the Anderson transition features. This should be contrasted to their failure in the case of the level correlation problem.Comment: 21 pages, REVTEX, 2 Postscript figures, uses epsf styl

    Effects of fluctuations and Coulomb interaction on the transition temperature of granular superconductors

    Full text link
    We investigate the suppression of superconducting transition temperature in granular metallic systems due to (i) fluctuations of the order parameter (bosonic mechanism) and (ii) Coulomb repulsion (fermionic mechanism) assuming large tunneling conductance between the grains gT1g_{T}\gg 1. We find the correction to the superconducting transition temperature for 3dd granular samples and films. We demonstrate that if the critical temperature Tc>gTδT_c > g_T \delta, where δ\delta is the mean level spacing in a single grain the bosonic mechanism is the dominant mechanism of the superconductivity suppression, while for critical temperatures Tc<gTδT_c < g_T \delta the suppression of superconductivity is due to the fermionic mechanism.Comment: 12 pages, 9 figures, several sections clarifying the details of our calculations are adde

    Two-scale localization in disordered wires in a magnetic field

    Full text link
    Calculating the density-density correlation function for disordered wires, we study localization properties of wave functions in a magnetic field. The supersymmetry technique combined with the transfer matrix method is used. It is demonstrated that at arbitrarily weak magnetic field the far tail of the wave functions decays with the length Lcu=2LcoL_{{\rm cu}}=2L_{{\rm co}}, where LcoL_{{\rm co}} and LcuL_{{\rm cu}} are the localization lengths in the absence of a magnetic field and in a strong magnetic field, respectively. At shorter distances, the decay of the wave functions is characterized by the length LcoL_{{\rm co}}. Increasing the magnetic field broadens the region of the decay with the length LcuL_{{\rm cu}}, leading finally to the decay with LcuL_{{\rm cu}} at all distances. In other words, the crossover between the orthogonal and unitary ensembles in disordered wires is characterized by two localization lengths. This peculiar behavior must result in two different temperature regimes in the hopping conductivity with the boundary between them depending on the magnetic field.Comment: 4 page

    Long-range correlations in the wave functions of chaotic systems

    Get PDF
    We study correlations of the amplitudes of wave functions of a chaotic system at large distances. For this purpose, a joint distribution function of the amplitudes at two distant points in a sample is calculated analytically using the supersymmetry technique. The result shows that, although in the limit of the orthogonal and unitary symmetry classes the correlations vanish, they are finite through the entire crossover regime and may be reduced only by localization effects.Comment: 4 pages RevTex + 2 fig

    Conductance length autocorrelation in quasi one-dimensional disordered wires

    Full text link
    Employing techniques recently developed in the context of the Fokker--Planck approach to electron transport in disordered systems we calculate the conductance length correlation function for quasi 1d wires. Our result is valid for arbitrary lengths L and ΔL\Delta L. In the metallic limit the correlation function is given by a squared Lorentzian. In the localized regime it decays exponentially in both L and ΔL\Delta L. The correlation length is proportional to L in the metallic regime and saturates at a value approximately given by the localization length ξ\xi as LξL\gg\xi.Comment: 23 pages, Revtex, two figure

    Exploring Level Statistics from Quantum Chaos to Localization with the Autocorrelation Function of Spectral Determinants

    Full text link
    The autocorrelation function of spectral determinants (ASD) is used to characterize the discrete spectrum of a phase coherent quasi- 1- dimensional, disordered wire as a function of its length L in a finite, weak magnetic field. An analytical function is obtained depending only on the dimensionless conductance g= xi/L where xi is the localization length, the scaled frequency x= omega/Delta, where Delta is the average level spacing of the wire, and the global symmetry of the system. A metal- insulator crossover is observed, showing that information on localization is contained in the disorder averaged ASD.Comment: 4 pages, 3 figure

    Anderson localization from the replica formalism

    Full text link
    We study Anderson localization in quasi--one--dimensional disordered wires within the framework of the replica σ\sigma--model. Applying a semiclassical approach (geodesic action plus Gaussian fluctuations) recently introduced within the context of supersymmetry by Lamacraft, Simons and Zirnbauer \cite{LSZ}, we compute the {\em exact} density of transmission matrix eigenvalues of superconducting wires (of symmetry class CCI.) For the unitary class of metallic systems (class AA) we are able to obtain the density function, save for its large transmission tail.Comment: 4 pages, 1 figur

    Magnetic-Field Dependence of the Localization Length in Anderson Insulators

    Full text link
    Using the conventional scaling approach as well as the renormalization group analysis in d=2+ϵd=2+\epsilon dimensions, we calculate the localization length ξ(B)\xi(B) in the presence of a magnetic field BB. For the quasi 1D case the results are consistent with a universal increase of ξ(B)\xi(B) by a numerical factor when the magnetic field is in the range \ell\ll{\ell_{\!{_H}}}\alt\xi(0), \ell is the mean free path,  ⁣H{\ell_{\!{_H}}} is the magnetic length c/eB\sqrt{\hbar c/eB}. However, for d2d\ge 2 where the magnetic field does cause delocalization there is no universal relation between ξ(B)\xi(B) and ξ(0)\xi(0). The effect of spin-orbit interaction is briefly considered as well.Comment: 4 pages, revtex, no figures; to be published in Europhysics Letter
    corecore