6,298 research outputs found

    The Plasma Structure of the Cygnus Loop from the Northeastern Rim to the Southwestern Rim

    Full text link
    The Cygnus Loop was observed from the northeast to the southwest with XMM-Newton. We divided the observed region into two parts, the north path and the south path, and studied the X-ray spectra along two paths. The spectra can be well fitted either by a one-component non-equilibrium ionization (NEI) model or by a two-component NEI model. The rim regions can be well fitted by a one-component model with relatively low \kTe whose metal abundances are sub-solar (0.1--0.2). The major part of the paths requires a two-component model. Due to projection effects, we concluded that the low kTe (about 0.2 keV) component surrounds the high kTe (about 0.6 keV) component, with the latter having relatively high metal abundances (about 5 times solar). Since the Cygnus Loop is thought to originate in a cavity explosion, the low-kTe component originates from the cavity wall while the high-kTe component originates from the ejecta. The flux of the cavity wall component shows a large variation along our path. We found it to be very thin in the south-west region, suggesting a blowout along our line of sight. The metal distribution inside the ejecta shows non-uniformity, depending on the element. O, Ne and Mg are relatively more abundant in the outer region while Si, S and Fe are concentrated in the inner region, with all metals showing strong asymmetry. This observational evidence implies an asymmetric explosion of the progenitor star. The abundance of the ejecta also indicates the progenitor star to be about 15 M_sun.Comment: 24 pages, 9 figures, Astrophysical Journal in pres

    On the Nature of AX J2049.6+2939 and AX J2050.0+2914

    Full text link
    AX J2049.6+2939 is a compact X-ray source in the vicinity of the southern blow-up region of the Cygnus Loop supernova remnant (Miyata et al. 1998a). This source was the brightest X-ray source inside the Cygnus Loop observed during the ASCA survey project. The X-ray spectrum was well fitted by a power-law function with a photon index of −2.1±0.1-2.1 \pm 0.1. Short-term timing analysis was performed and no coherent pulsation was found. Follow-up observations with ASCA have revealed a large variation in X-ray intensity by a factor of ≃\simeq 50, whereas the spectral shape did not change within the statistical uncertainties. In the second ASCA observation, we found another X-ray source, AX J2050.0+2941, at the north east of AX J2049.6+2939. During the three ASCA observations, the X-ray intensity of AX J2050.0+2941 varied by a factor of ≃\simeq4. No coherent pulsations could be found for AX J2050.0+2941. We have performed optical photometric and spectroscopic observations in the vicinity of AX J2049.6+2939 at the Kitt Peak National Observatory (KPNO). As a result, all objects brighter than BB-band magnitude of 22 in the error box can be identified with normal stars. Combined with the X-ray results and the fact that there are no radio counterparts, AX J2049.6+2939 is not likely to be either an ordinary rotation-powered pulsar or an AGN. The nature of AX J2049.6+2939 is still unclear and further observations over a wide energy band are strongly required. As to AX J2050.0+2941, the long-term X-ray variability and the radio counterpart suggests that it is an AGN.Comment: 23 pages, 4 figures, Accepted for publication by Astrophysical Journa

    Turbulent boundary layer around a group of obstacles in the direction of flow

    Get PDF
    Results of an investigation of a boundary layer in a turbulent flow on the surface of a wall having a group of obstacles on the path of flow are presented with regard to the mean velocity field, velocity distribution of the two dimensional flow, wall surface shear stresses and Reynolds stresses measured in a downstream cross section where an interference of boundary layers takes place in a flow around adjacent obstacles arranged on the path of flow

    Discovery of the compact X-ray source inside the Cygnus Loop

    Full text link
    We detected an X-ray compact source inside the Cygnus Loop during the observation project of the whole Cygnus Loop with the ASCA GIS. The source intensity is 0.11 c s−1^{-1} for GIS and 0.15 c s−1^{-1} for SIS, which is the strongest in the ASCA band. The X-ray spectra are well fitted by a power law spectrum of a photon index of \error{-2.1}{0.1} with neutral H column of (\error{3.1}{0.6})×1021cm−2{\rm \times 10^{21} cm^{-2}}. Taking into account the interstellar absorption feature, this source is X-ray bright mainly above 1 keV suggesting either an AGN or a rotating neutron star. So far, we did not detect intensity variation nor coherent pulsation mainly due to the limited observation time. There are several optical bright stellar objects within the error region of the X-ray image. We carried out the optical spectroscopy for the brightest source (V=+12.6) and found it to be a G star. The follow up deep observation both in optical and in X-ray wavelengths are strongly required.Comment: Accepted for Publications of the Astronomical Society of Japan 17 pages, 3 figur

    Ionization States and Plasma Structures of Mixed-morphology SNRs Observed with ASCA

    Full text link
    We present the results of a systematic study using ASCA of the ionization state for six ``mixed-morphology'' supernova emnants (MMSNRs): IC 443, W49B, W28, W44, 3C391, and Kes 27. MMSNRs show centrally filled thermal X-ray emission, which contrasts to shell-like radio morphology, a set of haracteristics at odds with the standard model of SNR evolution (e.g., the Sedov model). We have therefore studied the evolution of the MMSNRs from the ionization conditions inferred from the X-ray spectra, independent of X-ray morphology. We find highly ionized plasmas approaching ionization equilibrium in all the mmsnrs. The degree of ionization is systematically higher than the plasma usually seen in shell-like SNRs. Radial temperature gradients are also observed in five remnants, with cooler plasma toward the limb. In IC 443 and W49B, we find a plasma structure consistent with shell-like SNRs, suggesting that at least some MMSNRs have experienced similar evolution to shell-like SNRs. In addition to the results above, we have discovered an ``overionized'' ionization state in W49B, in addition to that previously found in IC 443. Thermal conduction can cause the hot interior plasma to become overionized by reducing the temperature and density gradients, leading to an interior density increase and temperature decrease. Therefore, we suggest that the ``center-filled'' X-ray morphology develops as the result of thermal conduction, and should arise in all SNRs. This is consistent with the results that MMSNRs are near collisional ionization equilibrium since the conduction timescale is roughly similar to the ionization timescale. Hence, we conclude that MMSNRs are those that have evolved over∌104\sim10^4 yr. We call this phase as the ``conduction phase.''Comment: 34 pages, 20 figures, 9 tables, accepted for publication in The Astrophysical Journa

    Kiso observations for 20 GRBs in HETE-2 era

    Get PDF
    We have established a GRB follow-up observation system at Kiso observatory (Japan) in 2001. Since the east Asian area had been blank for the GRB follow-up observational network, this observational system is very important in studying the temporal and spectral evolution of early afterglows. Using this system, we have performed quick observations for optical afterglows from early phase based on HETE-2 and INTEGRAL alerts. Thanks to the quick follow-up observation system, we have been able to use the Kiso observatory in 20 events, and conduct their follow-up observations in optical and near infrared wavelengths.Comment: 5 pages, 4 figure. Accepted for publication into "il nuovo cimento". Proceeding of the 4th Rome GRB conference, eds. L. Piro, L. Amati, S. Covino, B. Gendr

    Physical Relation of Source I to IRc2 in the Orion KL Region

    Full text link
    We present mid-infrared narrow-band images of the Orion BN/KL region, and N-band low-resolution spectra of IRc2 and the nearby radio source "I." The distributions of the silicate absorption strength and the color temperature have been revealed with a sub-arcsecond resolution. The detailed structure of the 7.8 micron/12.4 micron color temperature distribution was resolved in the vicinity of IRc2. A mid-infrared counterpart to source I has been detected as a large color temperature peak. The color temperature distribution shows an increasing gradient from IRc2 toward source I, and no dominant temperature peak is seen at IRc2. The spectral energy distribution of IRc2 could be fitted by a two-temperature component model, and the "warmer component" of the infrared emission from IRc2 could be reproduced by scattering of radiation from source I. IRc2 itself is not self-luminous, but is illuminated and heated by an embedded luminous young stellar object located at source I.Comment: 20 pages, 11 figures. Minor corrections had been done in the ver.2. Accepted for publication in PAS
    • 

    corecore