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In order to reduce the computing time required for obtaining the wake function (Green's function),
an approximate wake function, designated a quasi-wake function, is presented, which accurately
generates the wake potential for a finite particle distribution. Below a critical frequency, the
quasi-wake function has a Fourier component in agreement with that of the exact wake function
within a computational error of 0.1 %. The computing time required for obtaining the quasi-wake
function can be reduced by a factor of about 600 in a two-dimensional wake field analysis, and about
5600 in a three-dimensional wake field analysis, compared with a conventional short-bunch method.
The quasi-wake function is also applicable to calculation of coupling impedances of rf cavities.

1. INTRODUCTION

Performance of high-current electron accelerators depends on the single-bunch
instabilities that result from interactions between charged particles and self­
induced wake fields. Stability analysis requires a wake function to provide
information on short-range wake fields-that is, the transient electromagnetic
fields that occur inside the electron bunch due to the interaction between the
bunch itself and the surroundings. The wake function has longitudinal and
transverse components. The two components have singularities l peculiar to the
Green's function at the origin, where the first-order differential coefficient of the
longitudinal wake function and the second-order differential coefficient of the
transverse one have infinite values. Therefore, the wake functions have a great
many high-frequency components. Obtaining a more accurate wake function
requires more of the high frequency components, i.e., a smaller mesh size in the
finite mesh code for computing wake fields or rf electromagnetic fields.
Consequently, the computations are time-consuming and require enormous
amounts of memory.

From the viewpoint of a theoretical or a particle-tracking analysis of beam
instabilities, the final target of wake field analysis is not the accurate wake
function, but rather the accurate wake potential inside the finite bunch. Since no
finite-mesh code can calculate the exact wake function due to the singularity at
the origin, it is better to use an approximate kernel function of the convolution
integral equation as the wake function, which gives the wake potential inside the
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(1)

finite bunch with less computational error. In this paper, the kernel function is
designated a quasi-wake function, which is obtained by eliminating the high­
frequency components, which have little effect on the wake potential.

In Section 2, conventional methods are reviewed; this motivated the develop­
ment of the quasi-wake function. In Section 3, the quasi-wake function is derived,
and its applicability and effectiveness are shown from the viewpoints of bunch
length and computing time. Next, Section 4 applies the method of the quasi-wake
function to a reentrant rf cavity. In Section 5, the analysis method of coupling
impedances is illustrated by making use of the Fourier transform of the
quasi-wake function, and it is applied to the reentrant cavity. The results are
compared with those obtained from the well-known electromagnetic field analysis
code SUPERFISH.2

2. CONVENTIONAL METHODS

Before reviewing the conventional methods, the wake potential is described
briefly. The wake potential W(T) is defined in the following vector form: 3

WeT) = [ [E(z, T') + v(z, T') x B(z, T')] dz,

with

and

T=ct;

T' = T+z.
f3 '

f3 = Ivl
c

(2)

(3)

(4)

Here E and B are the electric and magnetic components of the wake field, v is the
particle velocity; L, the effective domain of the wake field; c, the light velocity; t,
the time; and z, the longitudinal coordinate along the particle trajectory. When
the velocity v is nearly constant, the wake potential is nearly proportional to the
change of the particle's momentum due to the electromagnetic forces of the wake
fields. Under the linearity of the wake field, each component of the wake (vector)
potential is expressed as the following convolution-integral form of the current
distribution I(T) of the electron bunch and the wake function Wb(T), which is
often referred to as a delta-function wake potential;

1 JooW(T) = ~ -00 I(T')Wb(T - T') dT'. (5)

The wake function enables calculation of the wake potentials for an arbitrary
current distribution.

The wake function can be approximately given by the short-bunch method4 or
the mode summation method5 using the optical resonator model. 5,6 In the former
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(6)

method, the wake function is approximated as the wake potential by the short
bunch with a Gaussian current distribution, which is designated here as a
reference Gaussian bunch. In the latter method, the wake function is composed
of a great many resonant modes over a wide frequency range. The validity of this
method was first pointed out by Bane.7

2.1. Short-Bunch Method

A Gaussian bunch longer than the reference Gaussian bunch induces a wake
potential ~(T) expressed exactly as [8]

1 foo (T 12

)~(T) = (2.n')1I2
ao

-00 exp - 2aij lv,.(T - T') dT'.

with
a = (a2 - a2)1/2.o g r , (7)

where ag and ar are the rms lengths of the Gaussian bunch and the reference
Gaussian bunch, respectively, and ~(T) is the wake potential of the reference
Gaussian bunch (reference wake potential). In the short-bunch method, the
reference wake potential ~(T) is substituted for the wake function W6 (T), and
therefore the wake potential Wg(T) is approximately expressed as

1 foo (T 12

)~(T) = (2n)1/2ag -00 exp - 20; lv,.(T - T') dT'. (8)

Eqs. (6) and (8) differ in the terms ao and ag , which gives rise to a significant
error in the case of ag =:= are No problem is caused by using Eq. (6) in the case of
the Gaussian bunch. In the case of the general particle.. distribution in the bunch
with the rms bunch length a, however, the application of the short-bunch method
is limited to long bunches with a2 » a; (a ~ 5ar ).

2.2. Mode Summation Method

The mode summation method is based on another expression6 of the wake
function, written as follows: 9

00

WeT) = - 2U(T) 2: K n exp (-anKnT)[cos (KnT) - an sin (KnT)], (9)
n=l

with
1

an = 2S Q ;
n n

K n-- ()J2n (RQnn ) (loss parameter);

(10)

(11)

(12)

(13)
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and

Sn = (1 - 4b~) 1/2;

U(T): Heaviside step function;
kn : wave number of resonant mode n;

Rn : coupling impedance of resonant mode n;

(14)

Qn: quality factor of resonant mode n.

Eq. (9) is given by the inverse Fourier transform of the following coupling
impedance Z(k):

(15)

It is impractical to calculate Eq. (9) since the density of the modes increases in
proportion to frequency. 10 In order to put the mode summation method to
practical use, the optical resonator models,6 is applied to disk-loaded cavities as
an analytical extension in the following form:

W(T)=-2U(T)[t Kncos (knT) + (00 KddknCOS(kT)dk], (16)
n-1 JkN+ 1

with

(17)

F;,(x) = [(X 1/2 + If + If ;

Fb(x) = x2Ki(x);

d
ka =0.170 2 ;

a

(18)

(19)

(20)

(22)

(21)
{3

kb = a(I _ (32)112 ;

esv = 6;0 (0) (Sessler-Vainshtein constant);

and where a is the beam tube radius; d, the gap length; kN + 1 , the wave number of
the resonant mode N + 1; and K 1(x), the first-order modified Bessel function of
the first kind. However, the analytical extension assumes that the cavities under
consideration are in an infinite periodic structure, and that every mode has an
infinite quality factor. The analytical extension is not applicable to a finite number
of cavities connected to beam tubes on both sides, the quality factor of which is
on the order of unity above the cutoff frequency determined by the beam tube
radius because of high-frequency field dissipation to the beam tubes.
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3.1. Derivation

The symbols used here are summarized in Table 1. When the current distribution
I(T) equals the current distribution Ir(T) of the reference Gaussian bunch, Eq.
(5) leads to the following expression in the frequency domain:

where

Symbol

1100

Zr(k) = - - ~(T)e-jkT dT;
c -00

TABLE I

Symbols and Their Definitions

Definition

(23)

(24)

W~(T)

W~(T)

~(T)

Z(k)
Z(k, kc )

Z(k, kc ; k[1 kG)

ar

q
G(T, kc )

Gb(T, kc; TG )

Gh(T, kc ; TG )

G(k, k(J
Gb(k, kc ; kG)
Gh(k, kc ; kG)
Hb(T, TG )

Hh(T, TG )

Hb(k, kG)
Hh(k, kG)
Ir(T)
i,(k)
i,(k)
TG

;G

Wake function
Qua~i-wake function
Refer·ence wake potential
Coupling impedance
Quasi-coupling impedance without window
Quasi-coupling impedance where the function G(T, kc ) is multiplied by a Hanning­

type window and the reference current distribution Ir ( T) is multiplied by a
box-type window

Coupling impedance obtained by finite Fourier transform of
wake function in Eq. (70a)

Coupling impedance obtained by finite Fourier transform of the wake function
multiplied by the Hanning-type window in Eq. (76a)

Critical wave number
Critical frequency
RMS bunch length of reference Gaussian bunch
Total charge of reference Gaussian bunch
Kernel function for generating quasi-wake function
G(T, kc ) multiplied by a box-type window
G(T, kc ) multiplied by a Hanning-type window
Fourier transform of G(T, kc)
Fourier transform of Gb(T, kc; TG )

Fourier transform of Gh(T, kc; TG )

Box-type window
Hanning-type window
Fourier transform of Hb(T, TG )

Fourier transform of Hh(T, TG )

Reference current distribution
Fourier transform of Ir(T)
Fourier transform of Ir(T) multiplied by a box-type window
Maximum value of truncated domain of integration in Eq. (31a)
Maximum value of truncated domain of integration in Eq. (31b)
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L(k) =! Joo MT)e- jkT dT;
c -00

1 JooZ{k) = - - Wo{T)e-jkT dT;
c -00

(25)

(26)

and ~(T) is the wake potential induced by the reference Gaussian bunch with
the current distribution Ir { T).

Next, the shapes of the functions ~(k) and Z{k) should be noted. The current
distribution Ir { T) is written as:

qc (T 2
)

Ir(T) = (2Jr)1/2<1
r

exp - 2<1; , (27)

where q is the total charge in the bunch. Through a Fourier transform the current
distribution Ir{T) of the reference Gaussian bunch becomes:

~(k) = q exp (-a;k2 j2). (28)

Typical shapes of the functions Z{k), ~(k) and Zr{k) are shown in Fig. 1, which

N

o

Cut-off wave number

I
k

N

o k

kcCCritical wave number)

o k

FIGURE 1 Typical shapes of the functions Z(k), L(k) and Zr(k)
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indicates that Zr(k) is not affected by the high frequency components of Z(k)
above a certain wave number kc (critical wave number). This means that Zr(k) is
expressed satisfactorily even by the quasi-coupling impedance Z(k, kc) which cuts
off all high-frequency components above kc from the exact coupling impedance
Z(k). The quasi-coupling impedance Z(k, kc) is written in the following form:

(29)

(30)

where

{
I (for Ikl ~ kc )

Uf(k, kc ) = 0 (for Ikl > kJ.

Here the critical wave number k c should be selected as a high value so as to
provide actual Fourier components of the particle bunch to be analyzed. The
quasi-wake function W6 (T) is defined as the inverse Fourier transform of the
quasi-coupling impedance Z(k, kc) in the following form:

IfW6 (T) = - G(T', kc)~(T - T') dT' (31a)
qc -00

=~ L" g(;', Uc)'~v,·[; - ;'] d;', (31b)
Jrq -00

where
ar (32)T = 21/2~;

21/2C
G(T, kc) =-g(~, uc); (33)

Jrar

g(;, uc) = fC exp (u 2
) cos (;u) du; (34)

arkc (35)Uc = 21/2 ;

w:.[~] = ~(T). (36)

The above derivation indicates that the quasi-wake function" W6 (T) is equiv­
alent to the function derived from the exact wake function W6 (T) passed through
the low-pass filter with the minimum filtering wave number kc • The filtering
eliminates the singularity peculiar to Green's function at the origin, and the
quasi-wake function is not satisfied with the causality condition of having a zero
value all over the negative time domain. If the high frequency components of the
current distribution are negligible above the critical frequency Ie (=ckc /2Jr), the
dissatisfaction with the causality condition gives a negligible effect on the wake
potential obtained from the quasi-wake function.

When analyzing coherent phenomena of particles through the particle tracking
analysis by using the wake function, numerical fluctuations11 appear in the
calculated results since the number of super-particles is limited to a value less
than the actual number of particles by a factor of 106

- 1012. While the exact wake



138 K. MIYATA AND M. NISHI

function enhances the numerical fluctuations due to the singularity and requires
more super-particles and a more time-consuming computation, the quasi-wake
function does not enhance the numerical fluctuations because it has no
singularity.

3.2. Method for High-Accuracy Computation

The computational accuracy of the quasi-wake function depends on TG or ;G' the
maximum truncated value of IT'I or 1;'1 in the integral calculation of Eq. (31).
Since G(T, kc ) or g(;, uc ) is a slowly damping oscillation function, high accuracy
in calculation requires a very large domain of integration. Two examples of the
function g(;, uc ) are shown in Fig. 2 with Uc = 1.5 and 2.0, which correspond to
t = 2.0 GHz and 2.7 GHz in the case of a = 5 cm. A large value of Uc moderates
the damping per oscillation and requires a larger domain of integration. When the
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FIGURE 2 Function g(;, uc )
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(38)

(39)

(40)

domain {; I - 00 ~ ; ~ oo} is limited to {; I - 100~ ; ~ 100}, a computational
accuracy of several percent is obtained with Uc ;:S 1.5, but the computational error
becomes larger over 20-30% with uc ;::: 2.0. The large domain requires a very
time-consuming computation of the reference wake potential over a long time
range.

The truncated domain {T I - TG~ T ~ TG} is equivalent to multiplying
G(T, kc) by the box-type window Hb(T, TG) as follows:

Gb(T, kc; TG) = G(T, kc)Hb(T, TG), (37)
with

( ) {
I (forITI~TG)

Hb T, TG = o (for ITI > TG ).

In order to reduce the computing time, the following Hanning-type window12

Hh(T, TG) is used instead of the box-type window Hb(T, TG):

Gh(T, kc; TG) = G(T, kc)Hh(T, TG),
with

( ) {
F(T/TG) (for ITI~TG)

Hh T, TG = o (for ITI > TG ),

F(x) = !(l + cos (.7lx». (41)

The Fourier components of G(T, kc), Gb(T, kc; TG ), Gh(T, kc; TG), Hb(T, TG)
and Hh(T, TG) are defined as G(k, kc), Gb(k, kc;kG)' Gh(k, kc;kG)' Hb(k, kG)
and Hh(k, kG)' respectively, where kG is defined as

k
_ 2.7l

G- .
TG

The Fourier transform of Eqs. (37) and (39) takes the following forms:

Gb(k, kc;kG) = G(k, kc) * Hb(k, kG)'

Gh(k, kc; kG) = G(k, kc) * Hh(k, kG)'

(42)

(43)

(44)

where * indicates the convolution multiplied by 1/2.7l.
The two windows Hb(T, TG), Hh(T, TG) and their Fourier compont;nts

Hb(k, kG) and Hh(k, kG) are shown in Fig. 3. In the box-type window case, the
damping of the spectral oscillation is more moderate with Ikl > kG, and
Gb(k, kc;kG) is affected by the wide range components of G(k, kc). On the other
hand, the spectral oscillation of the Hanning-type window damps rapidly;
therefore the Hanning-type window does not distort the spectrum G(k, kc) as
strongly as the box-type window. The superiority of the Hanning-type window is
evident in Fig. 4, which shows the frequency dependence of the ratios Yb and Yh.
They are given by:

Gb(k, kc;kG)
Yb = G(k, kc)

Gh(k, kc; kG)
Yh = G(k, kc)

(45)

(46)
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FIGURE 3 Box-type window Hb(T, TG ), Hanning-type window Hh(T, TG ) and their Fourier
components Hb(k, kG) and Hh(k, kG).

with ar = 5 cm and Ie = 3 GHz. The deviation of the ratio from 1.0 is less than 1%
in the case of the Hanning-type window, while the maximum deviation is 30% in
the case of the box-type window. As shown in this example, the Hanning-type
window does not distort the spectrum G(k, kc ) at wave numbers below the
vicinity of the critical wave number kc • It should be noted that the typical width
dk of the window spectrum Hh(k, kG) and the typical width ~ko of spectrum
G(k, kc ) satisfy the following relation:

~k/~ko« 1. (47)

Here, ~ko and ~k are expressed as:

21/2
~ko = - [uc - (u~ -In 2)1/2],

ar

(48)

(49)
kG Jr n21/2

~k=-=-=-
2 TG ar;G'

where ~ko is defined as the full width at the half maximum of G(k, kc ). Then Eq.
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FIGURE 4 Frequency dependence of ratios Yb and Yh with ar = 5 cm and critical frequency
Ie = 3GHz.

(47) is transformed as follows:

n
;g» U

c
- (u~ -In 2)1/2 . (50)

Equation (50) indicates that ;0» 19.4 with U c = 2.22, while ;G = 100 with the
same Uc in Fig. 4.

While the function G(T, kc) is multiplied by the Hanning-type window
Hh(T, TG ) as described above, the reference current distribution function Ir(T)
is multiplied by the box-type window Hb(T, 1/). It cannot be multiplied by the
same Hanning-type window Hh(T, 1/) as the function G(T, kc )' The reason is that
the Hanning-type window remarkably distorts the Fourier component of the
current distribution due to the absence of a long oscillating tail as in the function
G(T, kc). This explanation is reasonable considering the residual Fourier
component: G(k, kc ) * (1 - Hh(k, kG))'

The quasi-coupling impedance Z(k, kc ; k/, kG) deduced from the Fourier
transform of the quasi-wake function is written in the following form:
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(54)

(52)

(53a)

(53b)

k _ 2n
/- 4'

where Z(k) is the exact coupling impedance and t(k) is the Fourier transform of
current distribution function freT). The Fourier component lr(k) of the current
distribution function multiplied by the window Hb(T, 4) is

lr(k) = L(k) * Hb(k, k/)

= q exp (-a;k2/2) Re (<I>(X2) - <I>(XI)),

where 4»(x ) is the complex error function defined as follows:

2 LX<I>(x) =112 exp (-t2) dt,
n 0

and
Re (x): real part of complex x;

. ark
Xl = ] 21/2 ;

1
X2 = 21/2 (Na + jark);

4
Na =-·

ar

The exact Fourier component t(k) of the Gaussian bunch current is:

ir(k) = q exp (-a;k2 /2).

Therefore, Yb the ratio of lr(k) to lr(k), is

y/ = Re (<I>(X2) - <I>(x1)).

(55)

(56)

(57)

(58)

(59)

(60)

The ark-dependence of y/ is shown in Fig. 5 with the free parameter Na . This
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FIGURE 5 ar k-dependence of Yt (frequency dependence with ar = 5 cm).
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FIGURE 6 Frequency dependence of the ratios of the quasi-coupling impedance i to the exact Z
with Or = 5 cm, Ie = 3 GHz, and No = 4.

figure also depicts the equivalent frequency values with ar = 5 cm. This figure
indicates that YI nearly equals unity with ark ;S No - 0.5 when No ;::: 4; that is, the
current distribution multiplied by the box-type window can be used without
spectrum distortion under this condition. In the case of ar = 5 cm, for example, YI
nearly equals unity below 3 GHz when No = 4 or below 5 GHz when No = 6.

Consequently, the quasi-wake funtion is satisfactorily obtained in the following
condition:

No;::: max (4, V2 uc + 0.5). (61)

For example, the frequency dependence of the ratio of the quasi-coupling
impedance (Fourier component of quasi-wake function) to the exact one is shown
in Fig. 6 with ar = 5 em, Ie = 3 GHz, and No = 4. This figure explicitly indicates
that the quasi-coupling impedance agrees quite well with the exact one below the
vicinity of the critical frequency of 3 GHz.

3.3. Applicable Bunch Length and Computing Time

It is important to estimate the relation between the length of the reference
Gaussian bunch and that of the particle bunch to which the quasi-wake function is
applicable as the approximate kernel function in Eq. (5). Here, the bunch shape
is assumed to be a Gaussian distribution. If the wake potential is computed to
three significant figures, the applicable rms bunch length a is

exp (- a2k~/2) = 10-3
, (62)

which leads to

(63)

The critical wave number k c valid for the computation of quasi-wake function is:

ex (_ a 2k 2 /2) = {10-(6-3) = 10-3 (for single prec.isiOn),
Pre 10-(12-3) = 10-9 (for double precision), (64)
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3.72
(for single precision)

ar
kc =

6.44
(for double precision).

ar

(65)

On the other hand, where as is designated as the applicable rrns bunch length
in the short-bunch method, as is

(66)

for the same mesh size as in the case of a quasi-wake function in the finite mesh
code which computes the reference wake potential. Equations (63), (65) and (66)
lead to the following relations for a, ar and as:

ar as
-- - - (four double precision).
1.74 8.7

a=

as
a=­

r 5.0
(for single precision)

(67)

Equation (67) indicates that the short-bunch method requires a smaller mesh
size by 5.0 or 8.7 times than that used for the quasi-wake function under the
condition of as = a. Compared to the short-bunch method, the use of the
quasi-wake function reduces the computing time by a factor of 5.03 -8.73

, i.e.,
about 100 - 600 in a two-dimensional wake field analysis, and by a factor of
5.04

- 8.74
, Le., about 600-5600 in a three-dimensional one. Under the same

reference bunch length, the double-precision computation requires only about
10% more computing time than the single-precision one.

4. EXAMPLE OF QUASI-WAKE FUNCTION

The longitudinal quasi-wake function can be applied to a reentrant rf accelerating
cavity as shown in Fig. 7. The (longitudinal) reference wake potential is shown in
Fig. 8 when a Gaussian bunch passes through the cavity along the central axis
with the velocity of light, the rms bunch length ar = 5 cm and No = 4. The
referential wake potential is computed by the finite integration method which is
used in the wake field analysis code TBCI. 13

The frequency of 3 GHz leads to Uc = 2.22. Figure 9 shows the functions
g(;, uc ) and gh(;, Uc ; ;G) with ;G = 100 and Uc = 2.22, where gh(;, Uc ; ;G) is
defined as follows (see Eq. (33)):

nar
gh(;, Uc ; ;G) = 2112C Gh(T, kc ; TG). (68)

The substitution of the function gh(;, Uc ; ;G) for g(;, uc ) in Eq. (31b) generates
the quasi-wake function, which is shown in Fig. 10. Since ;G = 100 is equivalent
to TG = 3.5 m in this case, the quasi-wake function exists later than T = - TG =
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FIGURE 7 Geometry of the reentrant rf accelerating cavity.

- 3.54 m. Figure 11 shows the regenerated wake potential with rms bunch length
a = 5 cm by the quasi-wake function; the result from the short-bunch method is
shown for comparison. In this figure, the solid and broken lines indicate the
regenerated wake potential and the original one, respectively. The relative error
is defined as the ratio of the maximum difference between the regenerated wake
potential and the original one to the maximum absolute value of the original one
within the Gaussian bunch. The relative error is about 0.1% when using the
quasi-wake function, while it is about 20-30% in the short-bunch method, i.e.,
the use of the quasi-wake function improves the computational accuracy by a
factor of 100 compared with the short-bunch method.

Figure 12 shows how the computational accuracy depends on the value of ;G
for the box-type window and the Hanning-type window cases. In the box-type

100
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~
40
20 ~E 0 0 E~ -20 ....

-40 -

-60
-80 -1

-100
0 2 3 4 5 6
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FIGURE 8 Reference wake potential when a Gaussian bunch passes through the cavity (shown in
Fig. 7) along the central axis with the velocity of light, RMS bunch length Or = 5 cm, and N

a
= 4.
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FIGURE 11 Regenerated wake potentials with RMS bunch length a = 5 cm by the quasi-wake
function and by the short-bunch method.

window, the relative error is about 10-20% with ;G = 100-150, and it is not
reduced below 1% unless ;G is extremely large. In the Hanning-type window, the
relative error is reduced below 1% with ;G = 30, and is about 0.1% with
;G = 100, which is the best possible value; the relative error cannot be further
reduced by choosing ;G > 100. The optimal value of ;G varies in accordance with
Eq. (50).

5. ANALYSIS OF COUPLING IMPEDANCE BY MAKING USE OF
THE QUASI-WAKE FUNCTION

The quasi-wake function is found to serve as Green's function with high accuracy,
so it is expected that the quasi-coupling impedance obtained by the Fourier
transform of the quasi-wake function gives a good approximation of the exact
one. It is important to obtain the coupling impedance since it plays an important
role in the analysis of beam instabilities in the frequency domain.
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FIGURE 12 sG-dependence of the computational accuracy of regenerated wake potential of a
Gaussian bunch with a = ar = 5 cm, critical frequency 3 GHz (uc = 2.22). The result shows two cases
using quasi-wake functions by the box-type window and the Hanning-type window for function
G(k, kc ).

The coupling impedance can be obtained from the Fourier transform of wake
function14

, and it is defined by Eq. (26). The resonator wake is expressed in Eq.
(15). It should be noted that Eq. (15) is the result obtained through the exact
calculation of Eq. (26). Apparently the numerical calculation of integration up to
a positive infinite time cannot be executed in the case of a general wake function.
Therefore, in order to obtain a high-accuracy solution in the actual Fourier
transform, the domain of integration {T I - 00 ~ T:5 5r} is substituted for
{T I - 00 ~ T ~ 00}, where 1: is the damping distance of the resonant mode in
meters, as given by:

2Q
r=k'

r

(69)

with kr the resonant wave number. The domain of the integration {T I - 00 ~ T :5

5r} can surely be used 'in the broadband resonant mode above the cutoff
frequency because Q"'" 1-10. However, even the integration of this domain is
difficult to execute consistently in the narrowband resonant mode below the cutoff
frequency because Q"'" 103-104

, which leads to 1: = 103-104 m. This requires a
computing time of 100 hours with scalar-type computation using the HITAC­
M200H computer, even in a cylindrically symmetric two-dimensional analysis.
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Accordingly, Zc(k) is defined as follows, discriminated from Z(k):

1 JTm
Zc(k) = ~ -00 W6 (T)e-ikT dT

=Z(k)r(k),
where

[
sin X(kr j)]r(k)=l-exp[ -(y+jk)Tml COSX+j-.s "k+2Q '

1
y=-.

i

When Q > 10 and k = kn r(k) is approximated as follows:

r(k) = 1- exp ( - yTm ),

which leads to
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(70a)

(70b)

(71)

(72)

(73)

(74)

(75a)

(75b)

where Eq. (75b) is also applicable to the case of Q < 10. Equation (75) implies
that the value of R/Q is obtained for the narrowband mode below the cutoff
frequency, and the value of R is obtained for the broadband mode above the
cutoff frequency.

Since the direct calculation of Eq. (70) requires a wide domain of integration in
order to have enough mode separations, the integrand of Eq. (70) is also
multiplied by a Hanning-type window Hh(T, Tm ). When the integration using the
window is defined as Zc(k), it should be noted that Zc(k) is transformed as
follows:

Zc(k) = Zc(k) * Hh(k, km ) (76a)

=~[Zc(k) + ~Zc(k + km ) + ~Zc(k - km )], (76b)
where

k = 2n
m T

m
• (77)

Since in a high-Q rf cavity with Q ;:::; 104
, the mode separation of the narrow-band

mode is nearly perfect, and no other mode exists exactly at the wave number
k r ± km , Eq. (76) is rewritten as follows:

Zc(kr ) = !Zc(kr ) (for narrowband mode), (78)
which leads to

(79a)

(79b)



150 K. MIYATA AND M. NISHI

TABLE II

Parameters of Resonator Wake

Resonant frequency (MHz) R(Q) Q R/Q (Q)

200.0 00 00 100.0
500.0 00 00 100.0

Narrow band 900.0 00 00 100.0
1300.0 00 00 100.0
1700.0 00 00 100.0

1912.4 (cutoff frequency)

Broad band
2300.0 100.0 10.0 10.0
2700.0 100.0 10.0 10.0

300
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FIGURE 13 R/Q of narrowband modes, and real parts of Zc(k) and Zc(k) of broadband modes of
resonator wake shown in Table 2 with critical frequency 3 GHz.
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TABLE III

Resonant Frequencies, RIQ of Narrowband Modes Obtained by Fourier Transform of
Quasi-Wake Function, and Computational Errors.

Resonant frequency (MHz) RIQ (Q)

calculated exact error (%) calculated exact error (%)
199.68 200.0 -0.159 100.69 100.00 0.69
499.89 500.0 -0.022 99.97 100.00 -0.03
899.96 900.0 -0.004 99.70 100.00 -0.30

1299.99 1300.0 -0.001 99.48 100.00 -0.52
1700.02 1700.0 0.001 99.31 100.00 -0.69

The case is exemplified where Eq. (79) is applied to the resonator wake, the
parameters of which are summarized in Table 2. Figure 13 shows R/Q of
narrowband modes, along with real parts of Zc(k) and Zc(k) of broadband modes
of the resonator wake, computed both by the exact and quasi-wake functions,
with the critical frequency 3 GHz. Table 3 shows the numerical values of the
resonant frequencies and R/Q of narrowband modes computed by the quasi-wake
function. These results indicate that Eq. (79) give precise values of R / Q for
narrowband modes and a rough estimate of R for broadband modes.
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FIGURE 14 Real and imaginary parts of Zc(k) of the reentrant rf accelerating cavities shown in Fig.
7 with critical frequency 3 GHz.
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FIGURE 15 Real and imaginary parts of Zc(k) of the reentrant rf accelerating cavities shown in Fig.
7 with critical frequency 3 GHz. For narrowband modes below the cut-off frequency 1.91 GHz, R/Q
values are shown instead of the real part of Zc(k). R values can be read for the broadband modes.
The spectra below the cutoff frequency are refined considering the Q values of infinity.

The analysis of R/Q and R performed with Eq. (79) is applied to the
quasi-wake function of the perfect conducting rf cavity shown in Fig. 7. Figure 14
shows the real and imaginary parts of Zc(k) of the rf cavity with the critical
frequency 3 GHz and with the upper limit value of the domain of integration
Tm = 20 m. Figure 15 shows the values of R/Q and R obtained from the real part
of Zc(k) and the imaginary part of Zc(k) where the spectra below the cut-off

TABLE IV

Comparison of Calculations Between Quasi-Wake Function and SUPERFISH with Respect to
Resonant Frequencies and R/Q of Narrowband Modes.

Resonant frequency (MHz) R/Q (Q)

quasi-wake quasi-wake
function SUPERFISH error (%) function SUPERFISH error (%)
190.19 191.69 -0.783 68.76 68.95 -0.28
546.22 546.78 -0.102 8.45 8.26 2.30
729.30 730.46 -0.159 8.80 8.57 2.68
867.21 869.31 -0.242 12.10 11.54 4.85
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frequency are refined considering the Q values of infinity. The negative real
components of the broadband modes above the cut-off frequency are ascribed to
numerical errors in the referential wake potential.

The resonant frequencies and R/Q for narrowband modes below the cut-off
frequency are also obtained by the electromagnetic resonant field analysis code
SUPERFISH. Table 4 lists the computational results obtained both by the
quasi-wake function and SUPERFISH. It is confirmed that the two methods
agree well with each other, having relative errors of 0.1%-0.8% in resonant
frequency of several percent in R/Q.

6. CONCLUSIONS

The quasi-wake function is presented as an approximate kernel function in the
convolution integral for the wake potential. The quasi-wake function is computed
from the convolution integral of a reference wake potential of a Gaussian bunch
and the kernel function G(T, kc ) multiplied by the Hanning-type window. The
maximum length of the reference Gaussian bunch can be equal to the applicable
bunch length in the single-precision computation of reference wake potential,
while in the double precision computation the former can be longer than the
latter by a factor of 1.7. Compared with the short-bunch method, which is one
conventional approach, the quasi-wake function requires a computing time
shorter by a factor of 600 in the two-dimensional wake field analysis and by a
factor of 5600 in the three-dimensional wake field analysis. The Fourier transform
of the quasi-wake function gives resonant frequencies and R/Q of the narrow­
band modes with high computational accuracy, along with a rough estimate of R
for the broadband modes.
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