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TURBULENT BOUNDARY LAYER AROUND A GROUP 
OF OBSTACLES IN THE DIRECTION OF FLOW 

I. Nakamurax ), K. Miyatax ), 
xx) . xxx) R. Nakahama ,Y. Yoshl.ya 

1. Introduction 

In the case similar to that for a rough surface with geo

metrically two-dimensional elements of roughness when the main 

flow is shifted exactly 90 0 in a so-called "rough surface flow," 

obstacles are oriented in parallel with the flow and, as in 

rough surface flow, flow lamination zones are not formed. In 

practice, such wall flow very often takes place in heat exchang

ers. For example, with the trend to miniaturization of modern 

electric motors a demand arose for improved methods of heat radi

ation, and a serious problem may arise on the way to optimization 

if a casing has the above-mentioned obstacles on its surface. 

Because an angle to the flow direction is formed when ob

stacles are arranged in parallel with the flow, according to the 

authors' previous investigations [1, 2], a two-dimensional flow 

is formed in the vicinity of the angle similar to the well-known 

theory of turbulent flow in a rectangular pipe. Thus, mUltiple 

longitudinal turbulent interlayers are formed in the developed 

turbulent boundary layer and within this layer the case should be 

considered three-dimensional flow. 

The authors are aware of the only work (Liu et al. [3]) re

lating to the case of flow within a turbulent boundary layer a

long a surface with a group of obstacles arranged in the direction 

X)Active member, Engineering Faculty of the University of Nagoya. 

xX)Active member, Mitsubishi Jidosha Kogyo Co. 

!Xx)Active member, Gifu Professional High School 
Numbers in the margin indicate pagination in the foreign text. 
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of flow, and in this case a so-called burst retardation effect is 

observed. However, the general behavior within the boundary lay

er is still unknown. In the present investigation, for the case 

where the obstacles are relatively high with respect to the thick

ness of the boundary layer, and with regard to the existence of 

the above-mentioned two-dimensional flow, the authors studied the 

influence of these factors on the mean velocity field and the 

field of turbulence. For this purpose, a wall surface was formed 

by arranging several rows of prisms with a rectangular cross sec

tion on a flat plate. This article presents the results of in

vestigations of relationships between the mean velocity field in 

the turbulent boundary layer formed in the above-mentioned model, 

two-dimensional flow velocity components, turbulence and Reynolds 

stress. Wall surface shear stresses were also mentioned. 

Symbols 

x: coordinates in the direction of flow from the leading 

edge; 

y: coordinates from the wall surface in a direction perpen

dicular to the flat plate; 

z: coordinates from the center of the measuring plate in a 

direction perpendicular to x,y; 

z": distance from the side wall of a prism; 

c: thickness of the boundary layer; 

U,V,W: mean velocities within the boundary layer in x,y,z 

directions, respectively; 

u,v,w: fluctuation velocities in x,y,z directions, 

respectively; 

2 

Uo : main flow velocity; 

v: coefficient of kinematic viscosity; 

'w: wall surface shear stress. 

Other symbols are defined in the text where appropriate. 



2. Experimental Installation and Testing Method 

An experimental installation for the investigation comprises 

an open-type boundary layer wind tunnel [1] with a two-dimensional 

constriction having a contraction ratio of 6.55, and a diffuser 

of 336 x 1125 rnrn2 . Symbols and schematic representation of the 

measuring plate are shown in Figure 1. With a height of 60 rnrn 

Fig. 1. Configuration of 
the measuring plate and 
main symbols. 

and width of 20 rnrn, the length of 

prisms which comprise an obstacle 

is equal to 2.1 m. The measuring 

plate is formed of an aluminum flat 

plate having on its surface 13 rec

tangular prisms arranged with 40 

rnrn transverse pitch in the z direc

tion. Therefore, the width of the 

obstacles and spaces between them 

are equal. Though it is not shown 

in the drawing, dull pieces are at

tached to the front end faces of the 

prisms, so that their front faces coincide with the leading edge 

of the flat plate. This prevents the formation of collar vor

texes typical for such conditions. Besides, a trip wire of 

00.8 rnrn is installed at a distance of 50 rnrn from the leading edge. 

In the course of the experiments, the measuring plate was at

tached to a measuring unit provided with a static pressure control 

gate and a unit Reynolds number U Iv was kept constant at the 
o 

level of 1.40 x 10 6 11m. Under these conditions, at the main flow 

velocity of 20-23 mls the intensity of the turbulence in the main 

flow was equal to 0.3-0.4%. Measurements were conducted generally 

in a cross section of x = 1700 rnrn around the central prism and 

within the limits of -30 < z < 30 rnrn. 

The Pitot tube and Preston tube used for measuring mean flow 

velocity and wall surface shear stresses were made of stainless 

steel in the form of injection needles of 0.6 rnrn and 1.0 rnrn outer 
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diameter, respectively. Furthermore, a two-orifice pitot tube 

for measuring the distribution of the two-dimensional flow was 

installed at a height of 0.5 mm from the leading edge and at a 

distance of about 1 mm from the center of the pressure inlet, 

the pressure inlet orifice being arranged at 45 0 to the measured 

velocity component [4]. Two constant temperature hot-wire ane

mometers of standard commercial type and I-type and x-type probes 

were utilized for measuring Reynolds shear stresses. The probes 

work automatically. 

The wire for the X-type probe comprised a ¢ 5 ~m tungsten 

wire with a working part of 1 mm and aspect ratio of 200. A 

small angle between two wires was measured by means of a univer

sal projector. In the same vision field a reference wire was in

stalled, this reference wire being connected to a microscopic 

rotary motion device with a minimum readable scale factor of 1'. 

The main flow coincides with the bisector of said small angle. 

By means of linear adjustment of the respective anemometers and 

by means of their gain control, it was possible to perform an 

analogous treatment of respective signals from the anemometers 

through automatically adjustable multiplying circuits, and thus 

to determine Reynolds stresses -uv, -v2 . The same procedure 

was used for determining liW, -w2 after rotating the probes 900 

about their axes. 

3. Results of Experiments and Their Analysis 

3.1. Mean Velocity Field and Two-Dimensional Flow 

Figure 2(a), (b) illustrates examples of mean velocity dis

tributions in the direction of the main flow within boundary lay

ers taking place, respectively, on upper surfaces of the prisms 

and between the prisms. On the upper surface of prisms the velo

city distribution in the middle differs very little from the 

case of a single prism of the same dimensions, and only near the 

wall surface is an increase of velocity essential. However, the 

4 
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Fig. 2. Mean velocity distribution 

phase difference is substantial also near the end faces under the 

effect of adjacent prisms, whereby a three-dimensional turbulence 

occurs in the vicinity of the wall surface in these areas. On 

the other hand, a valley is formed on a curve for the between

prism distribution within the limits of 0 ~ y ~ 60 mm. As shown 

in the drawing, apart from the case in the vicinity of the lower 

wall surface, in this range the velocity changes almost linearly 

in the y direction. 

Figure 3 shows equal velocity lines in a flow around the cen

tral prism, the lines being calculated on the basis of results in 

Figure 2. As shown in the drawing, contrary to expectation, the 

boundary layer has cavities over the obstacles and protrusions 

over the spaces. As will be explained later, this is an effect 

of the two-dimensional flow. In the beginning, the boundary lay

ers around adjacent prisms in the upstream flow are formed similar

ly to that around a single prism, and if an interference of ad

jacent boundary layers is evaluated on the basis of equal velo

city lines [2] for the case of a single prism, it starts from 
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Fig. 3. Equal velocity 

lines. 

the edge in an upwardly inclined di

rection. Therefore, in the cross sec

tional area of initial interference 

a residual potential core zone is 

formed in between-prism spaces, and 

this model differs from the flow in 

an upstream cross section. When the 

interference is accomplished, the 

above-mentioned equal velocity lines, 

which are expanded in the areas, are 

formed. 

A distortion of the equal velocity lines over the prisms is 

essential and, except in the area in the vicinity of,the wall, veio

city gradients ~v/ay and au/az are of the same order. On the 

other hand, spaces accommodate fluid of a relatively low velocity 

and in this case, equal velocity lines are similar to those in a 

rectangular shaped pipe. However, as has been mentioned above, 

au/ay in the y direction are almost constant, which fact will 

later be described as a distinguishing feature of a turbulent 

flow structure. 

Figure 4(a) is a vector representation of two-dimensional 

flow velocity components V,W, obtained with the use of 2 two

orifice Pitot tubes designed specially for measuring velocity com

ponents in the y and z directions. Velocity components V and W 

can be determined also by means of the above-mentioned X-type 

probe. However, in this experiment, because of intensive fluc

tuations, it was extremely difficult to read out the data. There

fore, V and W in the present investigation were measured only by 

means of the two-orifice pitot tube. Because of inaccuracy in 

the results of measurements in the vicinity of wall surfaces 

having large velocity gradients (in view of the I rom distance to 

the pressure inlet orifice in the two-orifice Pitot tube), these 

data were omitted. 
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Fig. 4. Two-dimensional flow field. 

As one could expect from analysis of equal velocity lines on 

Figure 3, in the area of y ~ 60 rom, the two-dimensional flow is 

directed toward the main flow, whereas on the surface of prisms 

the flow is directed toward the wall surface. On the other hand, 

in space areas of y ~ 60 rom, in the middle the flow is directed 

toward the bottom, whereas along the side walls of the prisms, 

the flow is directed upward. Near edges of prisms the two-dimen

sional flow is very intensive. However, near the center of spaces 

the maximum intensity value corresponds to 2.4%. Figure 4(b) il

lustrates patterns of two-dimensional flows drawn on the basis of 

Figure 4(a), and although this drawing does not show results of 

measurements by means of the two orifice Pitot tube and a dis

tortion of the equal velocity curves, it illustrates also a weak 

two-dimensional flow near corners of the spaces which can be pre

sumed from a distortion of turbulence intensity curves, which are 

mentioned below, and from lines of equal Reynolds stresses. 

3.2. Self-Preservation Velocity Distribution 

The authors have already derived the following formula for 

a self-preservation velocity distribution in the region of a 



symmetry plane outer layer of a flow in the three-dimensional 

turbulent boundary layer [2]: 

!.(7)=ksiOO exp [ -{kl'i'oZ 
(1) 

J:'0J:'''( ~1z } ] +kz ~~) dTj'dTj" dTjo 
o 0 0.. c.o 

In the above formula: f s (? >" = (u 0 -u) /u't h (~:t;) =w/u't' 7 =y/t, ~ =z/~, 

subscript liS" means "plane of symmetry.1I Furthermore, the follow

ing approximate equation can be suggested for distribution (oh/~)~~O 

of microcoefficients of components W in Eq. (1): ------

(ah/a"coo=C(2:r(7)-l»)=sin21t(7)-l) (2) 

C in formula (2) comprises a constant which is determined by the 

flow. Figure 5 shows approximately in functional form the right 

term of Eq. (2) with C equal to 0.028 determined with the use of 

the results of measurements by means of the above-mentioned two 

orifice Pitot tube and graphic differentiation. 

0.8 

~0.6 
~ 
~0.4 

-0.2 

Fig. 5. 
(oh/oz;;)z;; 

Distribution of 

= 0 

The value of C comprises a 

mean value for the case of a single 

prism with the same height of 20 /1819 

mm and width of 60 mm as in the 

present experiment. Figure 6 il

lustrates a comparison between the 

self-preservation velocity dis-

tribution function, calculated from 

Eq. (1) with the use of the above-mentioned value of C, and that 

obtained experimentally. In the drawing, a solid line represents 

the case of Eq. (1) calculated with k3 = 18, within the range of 

y/o > 0.4, the curve almost coinciding with the results of experi

ments. However, there is disagreement between theoretical and ex

perimental data at y/o ~ 0.4. As explained further, this point 

corresponds to the maximum value of the Reynolds stress -uv, and 

after this, at lower values of y/o, the following condition takes 

8 
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place: a (-uv)/ay > 0, i.e. 

la(-uv)/ayl < la(uw/azl, whereby 

we cannot neglect the term a (-uw) /.az 

which has been neglected in deriv

ing Eq. (1). 

3.3. Wall Surface Shear Stress 

The authors have investigated 

three types of isolated prisms and 

in all cases mean values of wall 

surface shear stresses within the area of influence of the prisms 

were almost the same as for a two-dimensional plate [2]. ~here

fore, in the present case of multiple arrangement of prisms one 

can expect that, irrespective of the pitch between the rows, mean 

wall shear stresses become less than those on the two-dimensional 

plate. Besides, they have no tendency to increase, on the con

trary, they further decrease in proportion to the decrease of the 

pitch. 

In Figure 7 distribution of T , determined by means of the w 
Preston tube, is shown, T being expressed through a dimensionless w 
value ~w. A broken line in this drawing shows results of tests 

performed by Leutheusser [5] for a rectangular duct with a cross 

sectional aspect ratio equal to 3. For comparison, a curve 

designated by circles is given for an isolated prism. As has been 

anticipated, a mean value of ~ of wall surface shear stresses w 
for the present experiment is less than that for the isolated 

prism, and the difference is almost as high as 30%. From this 

point of view, a friction resistance on the wall surface having 

a group of obstacles is the same as within the area preceding 

commencement of interference of boundary layers in the flow around 

adjacent prisms and corresponds to the value of the resistance on 

a flat plate having a trip wire. However in the subsequent area, 

which includes a downstream flow, the resistance is reduced. 

9 
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As shown in the figure, in the 

present experiment T has a higher w 
peak on the surface of prisms than 

in the case of an isolated prism. 

As can be predicted from the above

mentioned mean velocity distribu

tion on the surface of prisms, this 

phenomenon is based on the fact 

that an increase of three-dimension

ality results mainly from the im

possibility of a two-dimensional 

flow expanding in a transverse 

direction further than half pitch 

because of the existence of adja

cent prisms. 

3.4 Distribution of Reynolds Stresses 

Figure 8 gives a comparison of the results of the present ex

periment with Klebanoff's case [6]. The results of the present 

experiment comprise measurements 

'-"-...,...--:--,--,--' , , __ -=-...-ur-1~t.0 

-~ . ·004 
::, 

~Q02 

I , r I I C"''''tt!: ! I 
o 0.2 0.4 0.6 - - .-

Fig. 
r,;;-2 
tU , 

over 

, n 

8. Distribution of 

IV; and -uv (the flow 
a flat plate) . 

0.8 
::) 
::; 

10.6 

0.4 

by means of an X-type probe on 

a smooth flat surface free of a 

pressure gradient. As shown in 

the drawing, Reynolds stresses 

-uv almost coincide. However, in 

the present experiment ;U2, Iv 2 

slightly exceed those of Klebanoff. 

Nevertheless, the results of 

measurements by means of the 

X-type probe may be considered as 

reliable, at least with regard 

to 102 , because they have rather 

good coincidence with I-type probe 

data (black circles in the drawing). 



Figure 9(a), (b) shows results of the same measurements at 

the center on the surface of prisms (z = 0). The results of 

measurements of U and IUZ, which correspond to I-type probe mea

surements, shown by black points, as in the previous drawing, 

also coincide with those obtained by means of the X-type probe. 

Because 2 = 0 is a geometrically symmetrical plane, the flow can 

also pass symmetrically with respect to this plane. However, as 

shown in Figure 9(b), the Reynolds stress -uw has a relatively 

large negative value and therefore, strictly speaking, there is 

not a plane of symmetry with respect to the flow. In reality, 

the plane -uw = 0 is not a z = Constant plane but rather comprises 

a complicated curvilinear surface. This asymmetry of the flow is 

also confirmed by means of equal velocity lines in Figure 3. How

ever, until now it has not been clear whether the asymmetry is 

inherent in the flow which includes multiple turbulent rows 

formed in the present experiment, or it is a characteristic 

feature of the experimental installation per see 
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A distinguishing feature in the case of z = 0 is that Reynolds 

stresses -uv and -uw have almost the same absolute values, and 

both are minimum in the vicinity of the wall surface (y/e ~ 0.2. 

At the same time, they have maximum value at y/e ~ 0.4. From 
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the point of view of equal velocity lines, I-uvl ~ I-uwl in this 

area correspond to lau/ayl ~ lau/azl. A position where the Rey

nolds stresses are minimum corresponds to that of ay/ay ~ 0 in the 

velocity distribution. Therefore, this area is characterized by 

an extremely small generation of energy in turbulence. Further

more, because of a very small value of -uv, in the area of 

0.2 < y/o < 0.4 the following condition takes place: a(-uv)/oy> O. 

It means that in the case of a two-dimensional flow, fluid ele

ments work with an acceleration. However, in reality, in the same 

area the following conditions occurs: lax-uv)/ayl < la(uw)/azl 

and the fluid elements are decelerated. As has been mentioned be

fore, the disagreement between the results of experiments and the 

self-preservation principle in the velocity distribution starts 

from the point where Reynolds stresses have the absolute minimum 

value. From this viewpoint it is clear that -uw plays an im

portant role in the analysis. 

Figure 10(a), (b) illustrates results of measurements in the 

middle of spaces, the height of the prisms corresponds to a posi

tion with y/o = 0.58. As shown in the drawing, within the range 

of 0.1 < y/o < 0.5 the velocity gradient au/ay is almost constant. -- -- --
In the same range, the intensity of turbulence Iti2 , Iv 2 Iw 2 is 

also constant. Besides, all three parameters are almost equal 

and comprise about 3% of the main flow. On the other hand, con

trary to a tendency on the surface of prisms (au/ay ~ 0), the 

value of -uv is rather less than that determined from the value 

of Iv 2 , on the basis that au/ay ~ Constant, and it is close to O. 

Figure 11 illustrates by way of example equal turbulence in

tensity lines only for the case of lu 2 , but for Iv 2 and Iw2 

the distributions have almost the same character. These equal 

value lines in the vicinity of the outer edge of the boundary 

layer are almost parallel to those of Figure 3. Besides, one 

can see that lu2 ~ Iv 2 ~ Iw 2 • On the other hand, near the edges 

of prisms with a very strong two-dimensional flow, the equal value 

lines have a complicated distortion, and, because of an upwardly 

12 
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directed two-dimensional flow near 

the central upper portion of the space, 

for example as shown by the line of 

lu2 /u = 4.5%, equal value lines which 
o 

are opposite to the direction of the 

two-dimensional flow have distortions. 

Although it is not revealed from the 

analysis of equal value lines of two 

orifice pitot tube measurements, some 

distortions also take place under the ef

fect of a two-dimensional flow near 

corners of spaces between prisms. 

Figure 12 illustrates equal value 

lines of the complete turbulence 
-2 -2 -2 energy (u + v + w )/2 expressed 

through a dimensionless value Uo
2 . 

It is clear that in general the pat

tern is the same as for la 2/u in 
o 

Figure 11. 

The transfer of turbulence energy, quantity of motion (Rey

nolds shear stresses) and quantity of heat with the turbulent flow 

13 



Fig. 12. Equivalent 
lines of turbulence 
energy. 

in general is determined as the sum 

of a small-scale turbulent gradient 

transfer and counterflow large-scale 

motion under the effect of the two

dimensional flow which takes place 

in the present situation. However, 

in this sum the transfer through the 

counterflow is dominant with regard 

to the turbulence energy, as well as 

the gradient transfer being dominant 

over the quantity of motion [7]. 

Figure 13 illustrates equal value 

lines for Reynolds stresses -uv. As 

is obvious from the drawing, these 

lines have few distinctions from 

those in Figure 11 and likewise have 

areas of distortion in the direction 

opposite the two-dimensional flow. 

With a gradient character of the 

transfer of quantity of motion, -uv 
can be expressed through the coeffi

cient v of turbulent kinematic vis-
T 

cosity in the following manner: 

-UU=VT(OU/oY+oViox)=cvTOUioyo (3) 

Here in the area of distortion of 

equivalent lines of -uv in Figure 13, 

in the direction opposite that of a 

two-dimensional flow, vU/vy determined 

from Figures 2 and 3 in z direction 

/1822 

are almost unchanged. Furthermore, 

because v local Iv are substantially constant, it may be assumed that 
T -

Fig. 13. Equivalent 
lines of -tlV. 

v ou/ayaz = O. On the other hand, because it follows from Fig. 
T 

13 that a(-uv)/az ~ 0, this distortion of curves is consistent 

with the results of the counterflow transfer of fluid with small 

values of Reynolds stresses through the upwardly directed 
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two-dimensional flow. Also the share of the counterflow transfer 

with respect to -uv is rather large even under condition -uv ~ 0 

in the area where, as was disclosed with regard to Figure 9, 

au/ay is approximately equal to O. Thus, with regard to the trans

fer of quantity of motion was well, counterflow fluid transfer 

plays an important role. 

3.5. Effect of Energy Balance on Generation of Two-Dimensional 
Flow. 

In the mechanism of generation of the above-described two 

types of two-dimensional flows, the consideration was based on a 

momentum equation or an equation of intensity of turbulence. 

In all these cases the two-dimensional flow is generated under the 

effect of non-uniformity of vertical Reynolds stresses. with re

gard to the mechanism of generation of the two-dimensional flow, 

Gessner [8] suggested the following formula, considering an energy 

equation of an average flow in the plane of symmetry of flow: 

(I' :,o)oPoloy+o(uiiW)/oz::::o. (4 ) 

wherein P = p(U
2 + V2 )/2 + P. Equation (4) shows the generation 

o 
of a two-dimensional flow V necessary to compensate for the energy 

of an average flow lost due to resistance to the Reynolds stresses 

-vw. 

Figure 14(a), (b) was drawn to study the adaptability of Eq. 

(4) on the basis of measurements carried out in the present exper

iment. In Figure 14(a), which illustrates results of measurement 

at the center on the surface of the prisms, a broken line shows 

Gessner's results for a rectangular duct. As follows from the 

drawing, in a major part of the range an accumulation of an aver

age flow energy under the effect of V and energy losses under the 

effect of a (Uuw)/az are almost balanced. Figure 14(b) shows 

conditions in the middle of the space between prisms, wherein in 

accordance with the previously described distortion of equal velo

city lines and position of reversing the two-dimensional flow 

15 
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Figure 14. Energy balance in an average flow. 

almost at the height of the prism, the transformation between the 

energy loss and energy accumulation can be explained. The balance 

between lo~ses from V and energy accumulation from a (Uuw)/az 

exists also above the height of the prism. However, in the space 

between prisms the loss caused by a (Uuw) exceeds essentially the 

accumulation of energy under the effect of V. This fact confirms 

that for a space between prisms the counterflow term (gain) 

caused by U should not be neglected. 

On the other hand, Hinze [9, 10] suggested the following equa

tion for the mechanism of generation of two-dimensional flow from 

the viewpoint of the energy balance: 

VOq loy + Il'oq/oz +uvou loy (5 ) 
+IIWOU /oz+£=O 

-2 -2 -2 wherein q = (u + v + w )/2 and E characterizes the viscous 

dissipation. 

Equation (5) characterizes the generation of a two-dimensional 

flow V,W which determines the supply and removal of turbulent en

ergy on the basis of energy generation and dissipation in the area 

16 
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where the energy scattering term can be neglected. Because the 

following condition: aq/ay < 0 occurs generally, when Eq. (5) is 

applied to the symmetry plane of the flow, it is possible in this 

case to determine the direction of a two-dimensional flow on the 

basis of the ratio between the generation and dissipation of 

energy. 

Figure 15 shows the variation of the turbulent energy q on 

the surface of the prism. A broken line in this drawing relates 

to Klebanoff's results. As follows from the drawing, q decreases 

non-monotonously and has its 

minimum at the point where, un-
xl0-3, 

-=s7t, 
~6f-~~\ 
u 5 r\;',. '. 

.4'" ~ 

o z = Omm 
o z = 7 
t:. z = 10 

--- Klebanoff 

der the previously described 

conditions of au/ay ~ 0, -uv 

; . ~~-~, J- ~ 

i ~~~ 2~ ,~~ 
: ............. 
' '-.::"""'= 

1 ~ , 

has an extremely small value . 

This explanation illustrates 

that, even with the anticipation 

of the ratio between the energy 

generation and dissipation, it 

is not so simple to determine 

the direction of a two-dimen

sional flow. 

{) 0.1 0.2 0.3 1.1 1.2 

Fig. 15. Distribution of the 
turbulent energy (on the sur
face of the prism) . 

Generally, a turbulence energy equation can be expressed in 

the following way with respect to a steady three-dimensional flow . 

If the conditions 

. Oq -- oU,. ,0 
U .-.:--+ U,Uj-~-~" .,..-~-

• G.Tj ox, ox, 
. Oq 

x (q+p' '(JIll, -:.--
. lOX) 

OU,Il,. =0 
-:.; -ori 

P. =IIV (jU,·OY+/lU: iC; .'Oz 

P, =11= AU /ox+ i': a l' ioy+/(;': 011' ioz 

(6 ) 

are taken for the energy generation term u.u.au./ax., then 3 terms 
l J l J 

remaining from the results of the experiments occur one order 

lower than PI and, therefore, can be neglected. Moreover, if we 
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also neglect the term uaq/ax among those for counterflow, the 

following equation can be derived: 

l' Oq,Oy+JV.Oq/oz+P.+P.+£+D=O-1 (7) 

D in Eq. (7) is an energy scattering term. Figure 16 shows separ

ately each term of the energy distribution Eq. (7), which presents 

the results of the present experiment. Because in the experiment 

it was impossible to separate D and £, they are given as a sum. 
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Fig. 16. Turbulence energy 
balance (in the middle of the 
surface of the prism) • 

4. Conclusions 

As shown in the drawing, 

among the counterflow terms, 

Waq/az, which is very small 

within the whole range, can be 

excluded. However, both terms 

of Ps are of the same order. 

The counterflow term Vaq/ay 

designates general losses, but 

due to the above-mentioned 

monotonous decrease of q in 

the present experiment, this 

term appears in the energy ac

cumulation area. Furthermore, 

the term PI' which is deter

mined by the aeolotropy of the 

turbulence, is of the same order 

as Vaq/ay. 
-2 -2 u , v and 

equal, can 

Near the outer edge 
-2 
w , which are almost 

be neglected. 

The following conclusions can be drawn with respect to the 

mean velocity field, velocity of the two-dimensional flow, wall 

surface shear stresses, and Reynolds stress components, measured 

in a relatively downstream cross section, where an interference 

of boundary layers takes place in a flow offluid around adjacent 

obstacles installed in the path of the flow; such investigation 

of a boundary layer in a turbulent flow on the surface of a wall 
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having a group of obstacles arranged on the path of flow has never 

been conducted before: 

(1) Over prismatic obstacles (y > 60 mm), a two-dimensional 

flow on the surface of these obstacles is directed toward wall 

surfaces, whereas between the obstacles the two-dimensional flow 

is directed toward the main flow. Therefore, above the obstacles 

the boundary layer has a valley, and between the obstacles it has 

a protrusion. A typical two-dimensional flow in a space between 

obstacles goes downward along a central line of the space and 

goes upward along both side walls of the space. 

(2) An area of a self-preservation velocity distribution 

function, with constants different from those for a case of an iso

lated obstacle, appears in the outer layer of flow at the center 

of the surface of the prisms. 

(3) Due to the existence of a low velocity stream in the 

space between prisms, the mean value of wall surface stresses 

differs from that for the case of an isolated prism, and it is 

less than the corresponding value on the surface of a flat two

dimensional plate. 

(4) A two-dimensional flow has a pronounced effect on the 

pattern of Reynolds stress distribution, and in the vicinity of 

the wall surface at the center on the surface of a prism, the 

distribution has its minimum. At this point the turbulence 

energy also has its minimum. 

(5) In a relatively large range in the center of the space 

between prisms a linear velocity distribution takes place in the 

y direction, which fact suggests that a distinctive mechanism of 

the turbulent flow generation occurs in this area. 

(6) There is no doubt that the conclusion of (4), drawn 

from the results of the present investigation, was made under 
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the influence of Hinze's concept with regard to the turbulence 

energy balance in the generation of a two-dimensional flow. Gess

ner's energy balance equation also was used. 

The authors expre's~ tneir gratitude to those persqns a.nd /' 

organizations who helped in conducting the present investigations. 
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