113 research outputs found

    Angular variation of the magnetoresistance of the superconducting ferromagnet UCoGe

    Get PDF
    We report a magnetoresistance study of the superconducting ferromagnet UCoGe. The data, taken on single-crystalline samples, show a pronounced structure at B∗=8.5B^* = 8.5~T for a field applied along the ordered moment m0m_0. Angle dependent measurements reveal this field-induced phenomenon has an uniaxial anisotropy. Magnetoresistance measurements under pressure show a rapid increase of B∗B^* to 12.8~T at 1.0~GPa. We discuss B∗B^* in terms of a field induced polarization change. Upper critical field measurements corroborate the unusual S-shaped Bc2(T)B_{c2}(T)-curve for a field along the bb-axis of the orthorhombic unit cell.Comment: 6 pages, 5 figures; accepted for publication in Phys. Rev.

    Balanced electron-hole transport in spin-orbit semimetal SrIrO3 heterostructures

    Get PDF
    Relating the band structure of correlated semimetals to their transport properties is a complex and often open issue. The partial occupation of numerous electron and hole bands can result in properties that are seemingly in contrast with one another, complicating the extraction of the transport coefficients of different bands. The 5d oxide SrIrO3 hosts parabolic bands of heavy holes and light electrons in gapped Dirac cones due to the interplay between electron-electron interactions and spin-orbit coupling. We present a multifold approach relying on different experimental techniques and theoretical calculations to disentangle its complex electronic properties. By combining magnetotransport and thermoelectric measurements in a field-effect geometry with first-principles calculations, we quantitatively determine the transport coefficients of different conduction channels. Despite their different dispersion relationships, electrons and holes are found to have strikingly similar transport coefficients, yielding a holelike response under field-effect and thermoelectric measurements and a linear, electronlike Hall effect up to 33 T.Comment: 5 pages, 4 figure

    Characterization of fast magnetosonic waves driven by interaction between magnetic fields and compact toroids

    Full text link
    Magnetosonic waves are low-frequency, linearly polarized magnetohydrodynamic (MHD) waves that can be excited in any electrically conducting fluid permeated by a magnetic field. They are commonly found in space, responsible for many well-known features, such as heating of the solar corona and acceleration of energetic electrons in Earth's inner magnetosphere. In this work, we present observations of magnetosonic waves driven by injecting compact toroid (CT) plasmas into a static Helmholtz magnetic field at the Big Red Ball (BRB) Facility at Wisconsin Plasma Physics Laboratory (WiPPL). We first identify the wave modes by comparing the experimental results with the MHD theory, and then study how factors such as the background magnetic field affect the wave properties. Since this experiment is part of an ongoing effort of forming a target plasma with tangled magnetic fields as a novel fusion fuel for magneto-inertial fusion (MIF, aka magnetized target fusion), we also discuss a future possible path of forming the target plasma based on our current results

    Emergence of the nematic electronic state in FeSe

    Get PDF
    We present a comprehensive study of the evolution of the nematic electronic structure of FeSe using high resolution angle-resolved photoemission spectroscopy (ARPES), quantum oscillations in the normal state and elastoresistance measurements. Our high resolution ARPES allows us to track the Fermi surface deformation from four-fold to two-fold symmetry across the structural transition at ~87 K which is stabilized as a result of the dramatic splitting of bands associated with dxz and dyz character. The low temperature Fermi surface is that a compensated metal consisting of one hole and two electron bands and is fully determined by combining the knowledge from ARPES and quantum oscillations. A manifestation of the nematic state is the significant increase in the nematic susceptibility as approaching the structural transition that we detect from our elastoresistance measurements on FeSe. The dramatic changes in electronic structure cannot be explained by the small lattice effects and, in the absence of magnetic fluctuations above the structural transition, points clearly towards an electronically driven transition in FeSe stabilized by orbital-charge ordering.Comment: Latex, 8 pages, 4 figure

    Evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 on entering the superconducting dome

    Get PDF
    Using the de Haas-van Alphen effect we have measured the evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 as function of isoelectric substitution (As/P) for 0.41<x<1 (T_c up to 25 K). We find that the volume of electron and hole Fermi surfaces shrink linearly with decreasing x. This shrinking is accompanied by a strong increase in the quasiparticle effective mass as x is tuned toward the maximum T_c. It is likely that these trends originate from the many-body interaction which give rise to superconductivity, rather than the underlying one-electron bandstructure.Comment: 4 page
    • …
    corecore