8,334 research outputs found

    Highly porous photoluminescent diazaborole-linked polymers: synthesis, characterization, and application to selective gas adsorption

    Get PDF
    The formation of boron–nitrogen (B–N) bonds has been widely explored for the synthesis of small molecules, oligomers, or linear polymers; however, its use in constructing porous organic frameworks remains very scarce. In this study, three highly porous diazaborole-linked polymers (DBLPs) have been synthesized by condensation reactions using 2,3,6,7,14,15-hexaaminotriptycene and aryl boronic acids. DBLPs are microporous and exhibit high Brunauer–Emmett–Teller surface area (730–986 m2 g−1) which enable their use in small gas storage and separation. At ambient pressure, the amorphous polymers show high CO2 (DBLP-4: 4.5 mmol g−1 at 273 K) and H2 (DBLP-3: 2.13 wt% at 77 K) uptake while their physicochemical nature leads to high CO2/N2 (35–42) and moderate CO2/CH4 (4.9–6.2) selectivity. The electronic impact of integrating diazaborole moieties into the backbone of these polymers was investigated for DBLP-4 which exhibits green emission with a broad peak ranging from 350 to 680 nm upon excitation with 340 nm in DMF without photobleaching. This study demonstrates the effectiveness of B–N formation in targeting highly porous frameworks with promising optical properties

    Spectral scaling and quantum critical behaviour in the pseudogap Anderson model

    Full text link
    The pseudogap Anderson impurity model provides a classic example of an essentially local quantum phase transition. Here we study its single-particle dynamics in the vicinity of the symmetric quantum critical point (QCP) separating generalized Fermi liquid and local moment phases, via the local moment approach. Both phases are shown to be characterized by a low-energy scale that vanishes at the QCP; and the universal scaling spectra, on all energy scales, are obtained analytically. The spectrum precisely at the QCP is also obtained; its form showing clearly the non-Fermi liquid, interacting nature of the fixed point.Comment: 7 pages, 2 figure

    Ecological Effects of Fear: How Spatiotemporal Heterogeneity in Predation Risk Influences Mule Deer Access to Forage in a Sky‐Island System

    Get PDF
    Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky‐island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green‐up), or the occurrence of cougars (Puma concolor). Female mule deer used available green‐up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky‐island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands

    Finite temperature dynamics of the Anderson model

    Full text link
    The recently introduced local moment approach (LMA) is extended to encompass single-particle dynamics and transport properties of the Anderson impurity model at finite-temperature, T. While applicable to arbitrary interaction strengths, primary emphasis is given to the strongly correlated Kondo regime (characterized by the T=0 Kondo scale ωK\omega_{\rm K}). In particular the resultant universal scaling behaviour of the single-particle spectrum D(\omega; T) \equiv F(\frac{\w}{\omega_{\rm K}}; \frac{T}{\omega_{\rm K}}) within the LMA is obtained in closed form; leading to an analytical description of the thermal destruction of the Kondo resonance on all energy scales. Transport properties follow directly from a knowledge of D(ω;T)D(\omega; T). The T/ωKT / \omega_{\rm K}-dependence of the resulting resistivity ρ(T)\rho(T), which is found to agree rather well with numerical renormalization group calculations, is shown to be asymptotically exact at high temperatures; to concur well with the Hamann approximation for the s-d model down to T/ωK∌1T/\omega_{\rm K} \sim 1, and to cross over smoothly to the Fermi liquid form ρ(T)−ρ(0)∝−(T/ωK)2\rho (T) - \rho (0) \propto -(T/\omega_{\rm K})^2 in the low-temperature limit. The underlying approach, while naturally approximate, is moreover applicable to a broad range of quantum impurity and related models

    Local quantum phase transition in the pseudogap Anderson model: scales, scaling and quantum critical dynamics

    Full text link
    The pseudogap Anderson impurity model provides a paradigm for understanding local quantum phase transitions, in this case between generalised fermi liquid and degenerate local moment phases. Here we develop a non-perturbative local moment approach to the generic asymmetric model, encompassing all energy scales and interaction strengths and leading thereby to a rich description of the problem. We investigate in particular underlying phase boundaries, the critical behaviour of relevant low-energy scales, and single-particle dynamics embodied in the local spectrum. Particular attention is given to the resultant universal scaling behaviour of dynamics close to the transition in both the GFL and LM phases, the scale-free physics characteristic of the quantum critical point itself, and the relation between the two.Comment: 39 pages, 19 figure

    Designing for emergence and innovation: Redesigning design

    Get PDF
    We reveal the surprising and counterintuitive truth that the design process, in and of itself, is not always on the forefront of innovation. Design is a necessary but not a sufficient condition for the success of new products and services. We intuitively sense a connection between innovative design and emergence. The nature of design, emergence and innovation to understand their interrelationships and interdependencies is examined. We propose that design must harness the process of emergence; for it is only through the bottom-up and massively iterative unfolding of emergence that new and improved products and services are successfully refined, introduced and diffused into the marketplace. The relationships among design, emergence and innovation are developed. What designers can learn from nature about emergence and evolution that will impact the design process is explored. We examine the roles that design and emergence play in innovation. How innovative organizations can incorporate emergence into their design process is explored. We demarcate the boundary between invention and innovation. We also articulate the similarities and differences of design and emergence. We then develop the following three hypotheses: Hypothesis 1: “An innovative design is an emergent design.” Hypothesis 2: “A homeostatic relationship between design and emergence is a required condition for innovation.”Hypothesis 3: “Since design is a cultural activity and culture is an emergent phenomenon, it follows that design leading to innovation is also an emergent phenomenon” We provide a number of examples of how design and emergence have worked together and led to innovation. Examples include the tool making of early man; the evolutionary chain of the six languages speech, writing, math, science, computing and the Internet; the Gutenberg printing press and techniques of collaborative filtering associated with the Internet. We close by describing the relationship between human and naturally “designed” systems and the notion a key element of a design is its purpose as is the case with a living organism

    Single-particle dynamics of the Anderson model: a local moment approach

    Full text link
    A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valent and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.Comment: 26 pages, 9 figure

    Acute Liver Failure Secondary to Hemophagocytic Lymphohistiocytosis during Pregnancy.

    Get PDF
    Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of excessive immune activation that mimics and occurs with other systemic diseases. A 35-year-old female presented with signs of viral illness at 13 weeks of pregnancy and progressed to acute liver failure (ALF). We discuss the diagnosis of HLH and Kikuchi-Fujimoto (KF) lymphadenitis in the context of pregnancy and ALF. HLH may respond to comorbid disease-specific therapy, and more toxic treatment can be avoided

    Range Scheduling Aid (RSA)

    Get PDF
    Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits

    Angiogenic signaling in the lungs of a metabolically suppressed hibernating mammal (Ictidomys tridecemlineatus)

    Get PDF
    To conserve energy in times of limited resource availability, particularly during cold winters, hibernators suppress even the most basic of physiologic processes. Breathing rates decrease from 40 breaths/minute to less than 1 breath/min as they decrease body temperature from 37oC to ambient. Nevertheless, after months of hibernation, these incredible mammals emerge from torpor unscathed. This study was conducted to better understand the protective and possibly anti-inflammatory adaptations that hibernator lungs may use to prevent damage associated with entering and emerging from natural torpor. We postulated that the differential protein expression of soluble protein receptors (decoy receptors that sequester soluble ligands to inhibit signal transduction) would help identify inhibited inflammatory signaling pathways in metabolically suppressed lungs. Instead, the only two soluble receptors that responded to torpor were sVEGFR1 and sVEGFR2, two receptors whose full-length forms are bound by VEGF-A to regulate endothelial cell function and angiogenesis. Decreased sVEGFR1/2 correlated with increased total VEGFR2 protein levels. Maintained or increased levels of key ĂŁ-secretase subunits suggested that decreased sVEGFR1/2 protein levels were not due to decreased levels of intramembrane cleavage complex subunits. VEGF-A protein levels did not change, suggesting that hibernators may regulate VEGFR1/2 signaling at thes level of the receptor instead of increasing relative ligand
    • 

    corecore