34,342 research outputs found

    Quantum Yang-Mills gravity in flat space-time and effective curved space-time for motions of classical objects

    Full text link
    Yang-Mills gravity with translational gauge group T(4) in flat space-time implies a simple self-coupling of gravitons and a truly conserved energy-momentum tensor. Its consistency with experiments crucially depends on an interesting property that an `effective Riemannian metric tensor' emerges in and only in the geometric-optics limit of the photon and particle wave equations. We obtain Feynman rules for a coupled graviton-fermion system, including a general graviton propagator with two gauge parameters and the interaction of ghost particles. The equation of motion of macroscopic objects, as an N-body system, is demonstrated as the geometric-optics limit of the fermion wave equation. We discuss a relativistic Hamilton-Jacobi equation with an `effective Riemann metric tensor' for the classical particles.Comment: 20 pages, to be published in "The European Physical Journal - Plus"(2011). The final publication is available at http://www.epj.or

    Ab initio many-body calculations of nucleon scattering on 4He, 7Li, 7Be, 12C and 16O

    Full text link
    We combine a recently developed ab initio many-body approach capable of describing simultaneously both bound and scattering states, the ab initio NCSM/RGM, with an importance truncation scheme for the cluster eigenstate basis and demostrate its applicability to nuclei with mass numbers as high as 17. Using soft similarity renormalization group evolved chiral nucleon-nucleon interactions, we first calculate nucleon-4He phase shifts, cross sections and analyzing power. Next, we investigate nucleon scattering on 7Li, 7Be, 12C and 16O in coupled-channel NCSM/RGM calculations that include low-lying excited states of these nuclei. We check the convergence of phase shifts with the basis size and study A=8, 13, and 17 bound and unbound states. Our calculations predict low-lying resonances in 8Li and 8B that have not been experimentally clearly identified yet. We are able to reproduce reasonably well the structure of the A=13 low lying states. However, we find that A=17 states cannot be described without an improved treatment of 16O one-particle-one-hole excitations and alpha clustering.Comment: 18 pages, 20 figure

    Long term monitoring of bright TeV Blazars with the MAGIC telescope

    Full text link
    The MAGIC telescope has performed long term monitoring observations of the bright TeV Blazars Mrk421, Mrk501 and 1ES1959+650. Up to 40 observations, 30 to 60 minutes each have been performed for each source evenly distributed over the observable period of the year. The sensitivity of MAGIC is sufficient to establish a flux level of 25% of the Crab flux for each measurement. These observations are well suited to trigger multiwavelength ToO observations and the overall collected data allow an unbiased study of the flaring statistics of the observed AGNs.Comment: 4 pages, 4 figures, to appear in the proceedings of the 30th International Cosmic Ray Conference, Merida, July 200

    X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue

    Full text link
    AGN are known to have complex X-ray spectra that depend on both the properties of the accreting SMBH (e.g. mass, accretion rate) and the distribution of obscuring material in its vicinity ("torus"). Often however, simple and even unphysical models are adopted to represent the X-ray spectra of AGN. In the case of blank field surveys in particular, this should have an impact on e.g. the determination of the AGN luminosity function, the inferred accretion history of the Universe and also on our understanding of the relation between AGN and their host galaxies. We develop a Bayesian framework for model comparison and parameter estimation of X-ray spectra. We take into account uncertainties associated with X-ray data and photometric redshifts. We also demonstrate how Bayesian model comparison can be used to select among ten different physically motivated X-ray spectral models the one that provides a better representation of the observations. Despite the use of low-count spectra, our methodology is able to draw strong inferences on the geometry of the torus. For a sample of 350 AGN in the 4 Ms Chandra Deep Field South field, our analysis identifies four components needed to represent the diversity of the observed X-ray spectra: (abridged). Simpler models are ruled out with decisive evidence in favour of a geometrically extended structure with significant Compton scattering. Regarding the geometry of the obscurer, there is strong evidence against both a completely closed or entirely open toroidal geometry, in favour of an intermediate case. The additional Compton reflection required by data over that predicted by toroidal geometry models, may be a sign of a density gradient in the torus or reflection off the accretion disk. Finally, we release a catalogue with estimated parameters such as the accretion luminosity in the 2-10 keV band and the column density, NHN_{H}, of the obscurer.Comment: 28 pages, 18 figures, catalogue available from https://www.mpe.mpg.de/~jbuchner/agn_torus/analysis/cdfs4Ms_cat/, software available from https://github.com/JohannesBuchner/BX

    Crystal orientation and thickness dependence of superconductivity on tetragonal FeSe1-x thin films

    Full text link
    Superconductivity was recently found in the simple tetragonal FeSe structure. Recent studies suggest that FeSe is unconventional, with the symmetry of the superconducting pairing state still under debate. To tackle these problems, clean single crystals and thin films are required. Here we report the fabrication of superconducting beta-phase FeSe1-x thin films on different substrates using a pulsed laser deposition (PLD) technique. Quite interestingly, the crystal orientation, and thus, superconductivity in these thin films is sensitive to the growth temperature. At 320C, films grow preferably along c-axis, but the onset of superconductivity depends on film thickness. At 500C, films grow along (101), with little thickness dependence. These results suggest that the low temperature structural deformation previously found is crucial to the superconductivity of this material

    Observational Evidence of Impacts of Aerosols on Seasonal-to-Interannual Variability of the Asian Monsoon

    Get PDF
    Observational evidences are presented showing that the Indian subcontinent and surrounding regions are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle. Increased loading of absorbing aerosols over the Indo-Gangetic Plain in April-May is associated with a) increased heating of the upper troposphere over the Tibetan Plateau, b) an advance of the monsoon rainy season, and c) subsequent enhancement of monsoon rainfall over the South Asia subcontinent, and reduction over East Asia. Also presented are radiative transfer calculations showing how differential solar absorption by aerosols over bright surface (desert or snow cover land) compared to dark surface (vegetated land and ocean), may be instrumental in triggering an aerosol-monsoon large-scale circulation and water cycle feedback, consistent with the elevated heat pump hypothesis (Lau et al. 2006)
    • …
    corecore