28,377 research outputs found

    Induced voltage in an open wire

    Full text link
    A puzzle arising from Faraday's law is considered and solved concerning the question which voltage is induced in an open wire with a time-varying homogeneous magnetic field. In contrast to closed wires where the voltage is determined by the time variance of magnetic field and enclosed area, in an open wire we have to integrate the electric field along the wire. It is found that the longitudinal electric field contributes with 1/3 and the transverse field with 2/3 to the induced voltage. In order to find the electric fields the sources of the magnetic fields are necessary to know. The representation of a homogeneous and time-varying magnetic field implies unavoidably a certain symmetry point or symmetry line which depend on the geometry of the source. As a consequence the induced voltage of an open wire is found to be the area covered with respect to this symmetry line or point perpendicular to the magnetic field. This in turn allows to find the symmetry points of a magnetic field source by measuring the voltage of an open wire placed with different angles in the magnetic field. We present exactly solvable models for a symmetry point and for a symmetry line, respectively. The results are applicable to open circuit problems like corrosion and for astrophysical applications

    Methodological Individualism, the We-mode, and Team Reasoning

    Get PDF
    Raimo Tuomela is one of the pioneers of social action theory and has done as much as anyone over the last thirty years to advance the study of social action and collective intentionality. Social Ontology: Collective Intentionality and Group Agents (2013) presents the latest version of his theory and applications to a range of important social phenomena. The book covers so much ground, and so many important topics in detailed discussions, that it would impossible in a short space to do it even partial justice. In this brief note, I will concentrate on a single, though important, theme in the book, namely, the claim that we must give up methodological individualism in the social sciences and embrace instead irreducibly group notions. I wish to defend methodological individualism as up to the theoretical tasks of the social sciences while acknowledging what is distinctive about the social world and collective intentional action. Tuomela frames the question of the adequacy of methodological individualism in terms of a contrast between what he calls the I-mode and the we-mode. He argues that we-mode phenomena are not reducible to I-mode phenomena, and concludes that we must reject methodological individualism. I will argue that the irreducibility of the we-mode to the I-mode, given how the contrast is set up, does not entail the rejection of methodological individualism. In addition, I will argue that the three conditions that Tuomela places on genuine we-mode activities, the group reason, collectivity, and collective commitment conditions, if they are understood in a way that does not beg the question, can plausibly be satisfied by a reductive account. Finally, I will argue that the specific considerations advanced in the book do not give us reason to think that a reductive account cannot be adequate to the descriptive and explanatory requirements of a theory of the social worl

    Quenching of pairing gap at finite temperature in 184W

    Full text link
    We extract pairing gap in 184^{184}W at finite temperature for the first time from the experimental level densities of 183^{183}W, 184^{184}W, and 185^{185}W using "thermal" odd-even mass difference. We found the quenching of pairing gap near the critical temperature Tc=0.47T_c = 0.47 MeV in the BCS calculations. It is shown that the monopole pairing model with a deformed Woods-Saxon potential explains the reduction of the pairing correlation using the partition function with the number parity projection in the static path approximation plus random-phase approximation.Comment: 5 pages, 4 figures, accepted for publication in PR

    Cross-Sender Bit-Mixing Coding

    Full text link
    Scheduling to avoid packet collisions is a long-standing challenge in networking, and has become even trickier in wireless networks with multiple senders and multiple receivers. In fact, researchers have proved that even {\em perfect} scheduling can only achieve R=O(1lnN)\mathbf{R} = O(\frac{1}{\ln N}). Here NN is the number of nodes in the network, and R\mathbf{R} is the {\em medium utilization rate}. Ideally, one would hope to achieve R=Θ(1)\mathbf{R} = \Theta(1), while avoiding all the complexities in scheduling. To this end, this paper proposes {\em cross-sender bit-mixing coding} ({\em BMC}), which does not rely on scheduling. Instead, users transmit simultaneously on suitably-chosen slots, and the amount of overlap in different user's slots is controlled via coding. We prove that in all possible network topologies, using BMC enables us to achieve R=Θ(1)\mathbf{R}=\Theta(1). We also prove that the space and time complexities of BMC encoding/decoding are all low-order polynomials.Comment: Published in the International Conference on Information Processing in Sensor Networks (IPSN), 201

    Effect of Edge Roughness on Electronic Transport in Graphene Nanoribbon Channel Metal Oxide Semiconductor Field-Effect Transistors

    Full text link
    Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal oxide semiconductor field-effect transistors (MOSFETs) are reported. The addition of edge disorder significantly reduces ON-state currents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edges become smoother. However the bandgap decreases with increasing width, thereby increasing the band-to-band tunneling mediated subthreshold leakage current even with perfect nanoribbons. These results suggest that without atomically precise edge control during fabrication, MOSFET performance gains through use of graphene will be difficult to achieve.Comment: 8 pages, 5 figure

    Differential Expression Of Gap Junction mRNAs And Proteins In The Developing Murine Kidney And In Experimentally Induced Nephric Mesenchymes

    Get PDF
    The expression of three gap junction (GJ) proteins, alpha-1 (Cx43), beta-1 (Cx32), and beta-2 (Cx26), and their transcripts were examined during the ontogeny of the mouse and rat kidney. These proteins were expressed in two non-overlapping patterns. The alpha-1 GJ protein was first observed in mesenchymal cells in the 12-day mouse kidney. By day 14 and thereafter, the ai protein was detected in the transient S-shaped bodies, but not in the podocytes of the maturing glomeruli. After birth the antigen was retained in a small subset of secretory tubules.The beta-1 and beta-2 GJ proteins were similar in their developmental patterns. They were first detected in a small subset of secretory tubules in the subcortical zone of day 17 embryos. These tubules were identified by immunohistochemical markers to be proximal. At birth, practically all proximal tubules expressed the two antigens.This analysis of GJ proteins was consistent with the results of S1 nuclease protection assays showing that, while the alpha-1 mRNA appeared early during kidney development and declined around birth, the two beta mRNAs appeared later and became intensified during the last days of intrauterine development.In experimentally induced metanephric mesenchymes, a transient expression of the alpha-1 GJ protein was seen during the segregation of the tubular anlagen. beta-1 and beta-2 GJ proteins were not detected in such induced mesenchymes cultivated up to 7 days.These observations provide evidence for the cell-specific utilization of different GJ genes during different stages of kidney organogenesis. The alpha-1 gene is activated during the early segregation of the secretory tubule and might contribute to its compartmentalization, while the beta-1 and beta-2 gene products are not detected until advanced stages of development. The latter gene products might be correlated with the physiological activity of the proximal tubules in vivo, as they are not expressed in experimentally induced tubules detectable with markers for proximal tubules
    corecore