19,268 research outputs found
High efficiency coherent optical memory with warm rubidium vapour
By harnessing aspects of quantum mechanics, communication and information
processing could be radically transformed. Promising forms of quantum
information technology include optical quantum cryptographic systems and
computing using photons for quantum logic operations. As with current
information processing systems, some form of memory will be required. Quantum
repeaters, which are required for long distance quantum key distribution,
require optical memory as do deterministic logic gates for optical quantum
computing. In this paper we present results from a coherent optical memory
based on warm rubidium vapour and show 87% efficient recall of light pulses,
the highest efficiency measured to date for any coherent optical memory. We
also show storage recall of up to 20 pulses from our system. These results show
that simple warm atomic vapour systems have clear potential as a platform for
quantum memory
An AC Stark Gradient Echo Memory in Cold Atoms
The burgeoning fields of quantum computing and quantum key distribution have
created a demand for a quantum memory. The gradient echo memory scheme is a
quantum memory candidate for light storage that can boast efficiencies
approaching unity, as well as the flexibility to work with either two or three
level atoms. The key to this scheme is the frequency gradient that is placed
across the memory. Currently the three level implementation uses a Zeeman
gradient and warm atoms. In this paper we model a new gradient creation
mechanism - the ac Stark effect - to provide an improvement in the flexibility
of gradient creation and field switching times. We propose this scheme in
concert with a move to cold atoms (~1 mK). These temperatures would increase
the storage times possible, and the small ensemble volumes would enable large
ac Stark shifts with reasonable laser power. We find that memory bandwidths on
the order of MHz can be produced with experimentally achievable laser powers
and trapping volumes, with high precision in gradient creation and switching
times on the order of nanoseconds possible. By looking at the different
decoherence mechanisms present in this system we determine that coherence times
on the order of 10s of milliseconds are possible, as are delay-bandwidth
products of approximately 50 and efficiencies over 90%
Storage and Manipulation of Light Using a Raman Gradient Echo Process
The Gradient Echo Memory (GEM) scheme has potential to be a suitable protocol
for storage and retrieval of optical quantum information. In this paper, we
review the properties of the -GEM method that stores information in
the ground states of three-level atomic ensembles via Raman coupling. The
scheme is versatile in that it can store and re-sequence multiple pulses of
light. To date, this scheme has been implemented using warm rubidium gas cells.
There are different phenomena that can influence the performance of these
atomic systems. We investigate the impact of atomic motion and four-wave mixing
and present experiments that show how parasitic four-wave mixing can be
mitigated. We also use the memory to demonstrate preservation of pulse shape
and the backward retrieval of pulses.Comment: 26 pages, 13 figure
Maximal quadratic modules on *-rings
We generalize the notion of and results on maximal proper quadratic modules
from commutative unital rings to -rings and discuss the relation of this
generalization to recent developments in noncommutative real algebraic
geometry. The simplest example of a maximal proper quadratic module is the cone
of all positive semidefinite complex matrices of a fixed dimension. We show
that the support of a maximal proper quadratic module is the symmetric part of
a prime -ideal, that every maximal proper quadratic module in a
Noetherian -ring comes from a maximal proper quadratic module in a simple
artinian ring with involution and that maximal proper quadratic modules satisfy
an intersection theorem. As an application we obtain the following extension of
Schm\" udgen's Strict Positivstellensatz for the Weyl algebra: Let be an
element of the Weyl algebra which is not negative semidefinite
in the Schr\" odinger representation. It is shown that under some conditions
there exists an integer and elements such
that is a finite sum of hermitian squares. This
result is not a proper generalization however because we don't have the bound
.Comment: 11 page
Parental stress increases body mass index trajectory in pre-adolescents.
What is already known about this subjectRates of childhood obesity have increased since the mid-1970s. Research into behavioural determinants has focused on physical inactivity and unhealthy diets. Cross-sectional studies indicate an association between psychological stress experienced by parents and obesity in pre-adolescents.What this study addsWe provide evidence of a prospective association between parental psychological stress and increased weight gain in pre-adolescents. Family-level support for those experiencing chronic stress might help promote healthy diet and exercise behaviours in children.ObjectiveWe examined the impact of parental psychological stress on body mass index (BMI) in pre-adolescent children over 4 years of follow-up.MethodsWe included 4078 children aged 5-10 years (90% were between 5.5 and 7.5 years) at study entry (2002-2003) in the Children's Health Study, a prospective cohort study in southern California. A multi-level linear model simultaneously examined the effect of parental stress at study entry on the attained BMI at age 10 and the slope of change across annual measures of BMI during follow-up, controlled for the child's age and sex. BMI was calculated based on objective measurements of height and weight by trained technicians following a standardized procedure.ResultsA two standard deviation increase in parental stress at study entry was associated with an increase in predicted BMI attained by age 10 of 0.287 kg m(-2) (95% confidence interval 0.016-0.558; a 2% increase at this age for a participant of average attained BMI). The same increase in parental stress was also associated with an increased trajectory of weight gain over follow-up, with the slope of change in BMI increased by 0.054 kg m(-2) (95% confidence interval 0.007-0.100; a 7% increase in the slope of change for a participant of average BMI trajectory).ConclusionsWe prospectively demonstrated a small effect of parental stress on BMI at age 10 and weight gain earlier in life than reported previously. Interventions to address the burden of childhood obesity should address the role of parental stress in children
Configurable unitary transformations and linear logic gates using quantum memories
We show that a set of optical memories can act as a configurable linear
optical network operating on frequency-multiplexed optical states. Our protocol
is applicable to any quantum memories that employ off-resonant Raman
transitions to store optical information in atomic spins. In addition to the
configurability, the protocol also offers favourable scaling with an increasing
number of modes where N memories can be configured to implement an arbitrary
N-mode unitary operations during storage and readout. We demonstrate the
versatility of this protocol by showing an example where cascaded memories are
used to implement a conditional CZ gate.Comment: 5 pages, 2 figure
Stability of Filters for the Navier-Stokes Equation
Data assimilation methodologies are designed to incorporate noisy
observations of a physical system into an underlying model in order to infer
the properties of the state of the system. Filters refer to a class of data
assimilation algorithms designed to update the estimation of the state in a
on-line fashion, as data is acquired sequentially. For linear problems subject
to Gaussian noise filtering can be performed exactly using the Kalman filter.
For nonlinear systems it can be approximated in a systematic way by particle
filters. However in high dimensions these particle filtering methods can break
down. Hence, for the large nonlinear systems arising in applications such as
weather forecasting, various ad hoc filters are used, mostly based on making
Gaussian approximations. The purpose of this work is to study the properties of
these ad hoc filters, working in the context of the 2D incompressible
Navier-Stokes equation. By working in this infinite dimensional setting we
provide an analysis which is useful for understanding high dimensional
filtering, and is robust to mesh-refinement. We describe theoretical results
showing that, in the small observational noise limit, the filters can be tuned
to accurately track the signal itself (filter stability), provided the system
is observed in a sufficiently large low dimensional space; roughly speaking
this space should be large enough to contain the unstable modes of the
linearized dynamics. Numerical results are given which illustrate the theory.
In a simplified scenario we also derive, and study numerically, a stochastic
PDE which determines filter stability in the limit of frequent observations,
subject to large observational noise. The positive results herein concerning
filter stability complement recent numerical studies which demonstrate that the
ad hoc filters perform poorly in reproducing statistical variation about the
true signal
Biased EPR entanglement and its application to teleportation
We consider pure continuous variable entanglement with non-equal correlations
between orthogonal quadratures. We introduce a simple protocol which equates
these correlations and in the process transforms the entanglement onto a state
with the minimum allowed number of photons. As an example we show that our
protocol transforms, through unitary local operations, a single squeezed beam
split on a beam splitter into the same entanglement that is produced when two
squeezed beams are mixed orthogonally. We demonstrate that this technique can
in principle facilitate perfect teleportation utilising only one squeezed beam.Comment: 8 pages, 5 figure
- …