2,741 research outputs found

    Electronic inhomogeneity at magnetic domain walls in strongly-correlated systems

    Full text link
    We show that nano-scale variations of the order parameter in strongly-correlated systems can induce local spatial regions such as domain walls that exhibit electronic properties representative of a different, but nearby, part of the phase diagram. This is done by means of a Landau-Ginzburg analysis of a metallic ferromagnetic system near an antiferromagnetic phase boundary. The strong spin gradients at a wall between domains of different spin orientation drive the formation of a new type of domain wall, where the central core is an insulating antiferromagnet, and connects two metallic ferromagnetic domains. We calculate the charge transport properties of this wall, and find that its resistance is large enough to account for recent experimental results in colossal magnetoresistance materials. The technological implications of this finding for switchable magnetic media are discussed.Comment: Version submitted to Physical Review Letters, except for minor revisions to reference

    Reliable quantification of 1,2-dihydroxynaphthalene in urine using a conjugated reference compound for calibration.

    No full text
    After environmental and occupational exposure to naphthalene, 1,2-dihydroxynaphthalene (1,2-DHN) was shown to be one major metabolite in human naphthalene metabolism. However, the instability of free 1,2-DHN complicates the reliable determination of this promising biomarker in urine. To solve this stability problem, glucuronide conjugates of 1,2-DHN and the corresponding isotopically labelled D-6-1,2-dihydroxynaphthalene (D-6-1,2-DHN) were synthesised and applied as reference material and internal standard in a gas chromatographic-tandem mass spectrometric (GC-MS/MS) method. The determination of 1- and 2-naphthol (1-MHN, 2-MHN) was included in the procedure to enable a comprehensive assessment of naphthalene metabolism and exposure. The results of the validation showed a high reliability and sensitivity of the method. The detection limits range from 0.05 to 0.16 mu g/L. Precision and repeatability were determined to range from 1.4 to 6.6% for all parameters. The simultaneous determination of 1- and 2-MHN as additional parameters besides 1,2-DHN enables the application of the method for further metabolism and kinetic studies on naphthalene. The use of glucuronide-derivative reference substances and the application of structurally matched isotopic-labelled internal standards for each substance guarantee a reliable quantification of the main naphthalene metabolites 1,2-DHN and 1- and 2-MHN

    Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells

    Full text link
    We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques

    Multicolour fluorescent "sulfide-sulfone" diarylethenes with high photo-fatigue resistance.

    No full text
    Compact "push-pull" photochromic diaryethenes (DAEs) with unsymmetric oxidation pattern of the benzothiophene core display multicolour fluorescence switching, as a result of dual emission from both "open" and "closed" forms. These DAEs also present an unprecedented photo-fatigue resistance

    Quantum phase transition in the dioptase magnetic lattice

    Full text link
    The study of quantum phase transitions, which are zero-temperature phase transitions between distinct states of matter, is of current interest in research since it allows for a description of low-temperature properties based on universal relations. Here we show that the crystal green dioptase Cu_6Si_6O_18 . 6H_2O, known to the ancient Roman as the gem of Venus, has a magnetic crystal structure, formed by the Cu(II) ions, which allows for a quantum phase transition between an antiferromagnetically ordered state and a quantum spin liquid.Comment: 6 pages, 5 figures, EPL, in pres

    About low field memory and negative magnetization in semiconductors and polymers

    Full text link
    Ginzburg-Landau bulk magnetization of itinerant electrons can provide a negative effective field in the Weiss model by coupling to localized magnetic moments. The coupling enforces remnant magnetization, which can be negative or positive depending on the sample magnetic history. Stable magnetic susceptibility of coupled nonequilibrium subsystems with magnetization reversal is always positive. Gauss-scale fields could be expected for switching between negative and positive remnant moments in semiconductors with coupling at ambient temperatures. Negative magnetization in ultra-high conducting polymers is also discussed within the developed framework.Comment: 8 pages, no figure

    Temperature evolution of magnetic structure of HoFeO3_3 by single crystal neutron diffraction

    Get PDF
    We have investigated the temperature evolution of the magnetic structures of HoFeO3_3 by single crystal neutron diffraction. The three different magnetic structures found as a function of temperature for \hfo\ are described by the magnetic groups Pb′'n′21'2_1, Pbn212_1 and Pbn′21′'2_1' and are stable in the temperature ranges ≈\approx 600-55~K, 55-37~K and 35>T>2>T>2~K respectively. In all three the fundamental coupling between the Fe sub-lattices remains the same and only their orientation and the degree of canting away from the ideal axial direction varies. The magnetic polarisation of the Ho sub-lattices in these two higher temperature regions, in which the major components of the Fe moment lie along xx and yy, is very small. The canting of the moments from the axial directions is attributed to the antisymmetric interactions allowed by the crystal symmetry. They include contributions from single ion anisotropy as well as the Dzyaloshinski antisymmetric exchange. In the low temperature phase two further structural transitions are apparent in which the spontaneous magnetisation changes sign with respect to the underlying antiferromagnetic configuration. In this temperature range the antisymmetric exchange energy varies rapidly as the the Ho sub-lattices begin to order. So long as the ordered Ho moments are small the antisymmetric exchange is due only to Fe-Fe interactions, but as the degree of Ho order increases the Fe-Ho interactions take over whilst at the lowest temperatures, when the Ho moments approach saturation the Ho-Ho interactions dominate. The reversals of the spontaneous magnetisation found in this study suggest that in \hfo\ the sums of the Fe-Fe and Ho-Ho antisymmetric interactions have the same sign as one another, but that of the Ho-Fe terms is opposite

    Endomorphisms of quantized Weyl algebras

    Full text link
    Belov-Kanel and Kontsevich conjectured that the group of automorphisms of the n'th Weyl algebra and the group of polynomial symplectomorphisms of C^2 are canonically isomorphic. We discuss how this conjecture can be approached by means of (second) quantized Weyl algebras at roots of unity
    • …
    corecore