78 research outputs found

    Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations, and model simulations

    Get PDF
    We present the results of total column measurements of CO, C2H6 and fine mode aerosol optical depth (AOD) during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B) campaign over Eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back-trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward-trajectories to demonstrate that the enhanced CO, C2H6 and fine mode AOD seen near Halifax and Toronto originated from forest fires in Northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the emission ratio (ERC2H6/CO) and the emission factor (EFC2H6) of C2H6 (with respect to the CO emission) were estimated from these ground-based observations. These C2H6 emission results from boreal fires in Northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Monitoring of Burning Emissions (FLAMBE) inventory. Agreement within the stated measurement uncertainty was found for the magnitude of the enhancement of the total columns of CO (~3%) and C2H6 (~8%) between the measured and modelled results. However, there is a small shift in time (of approximately 6 h) of arrival of the plume over Halifax between the results

    A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment

    Get PDF
    We present measurements of a long-range smoke transport event recorded on 20–21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wildland fires burning in eastern Manitoba and western Ontario. <br><br> We investigate a plume with high trace gas amounts but low amounts of particles that preceded and overlapped at the Halifax site with a second plume with high trace gas loadings and significant amounts of particulate material. We show that the first plume experienced a meteorological scavenging event, but the second plume had not been similarly scavenged. This points to the necessity to account carefully for the plume history when considering long-range transport since simultaneous or near-simultaneous times of arrival are not necessarily indicative of either similar trajectories or meteorological history. We investigate the origin of the scavenged plume, and the possibility of an aerosol wet deposition event occurring in the plume ~ 24 h prior to the measurements over Halifax. The region of lofting and scavenging is only monitored on an intermittent basis by the present observing network, and thus we must consider many different pieces of evidence in an effort to understand the early dynamics of the plume. Through this discussion we also demonstrate the value of having many simultaneous remote-sensing measurements in order to understand the physical and chemical behaviour of biomass burning plumes

    Mutualism and Adaptive Divergence: Co-Invasion of a Heterogeneous Grassland by an Exotic Legume-Rhizobium Symbiosis

    Get PDF
    Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion

    Nonequilibrium thermodynamics and maximum entropy production in the Earth system

    Full text link

    Insects Pollinating Alfalfa in Central Sweden

    No full text
    Alfalfa is more and more recognized as an excellent forage crop in this country. The difficulty in obtaining homegrown seed is one of the most outstanding obstacles preventing an extended cultivation of alfalfa. One of the possible causes of this difficulty is believed to be the insufficient frequency of pollinating insects. During the period 1945-1948 investigations were carried out in order to secure data on the species of insects, their frequency, manner of working and habits of living. Systematic investigations were made at Ultuna near Uppsala complemented by observations in other parts of the country

    Cytogenetic Research on Hexaploid Alfalfa, Medicago Sativa

    No full text
    SUMMARYA spontaneously occurring hexaploid plant (2 n = 6x=48) was found among white-flowered tetraploid plants of Medicago sativa.This plant was studied from a morphological and cytological point of view. All the metaphases observed showed 48 chromosomes, six of which with large satellites. Total chromosome length ranged from μ 1.34 to μ 2.25 whereas that of tetraploid ranged from μ 2.08 to μ 2.83. Most diakinesis showed bivalents and 1 or, more frequently, 2 quadrivalents. Two or more univalents were observed in 56.4% of metaphases I and lagging chromosomes, varying in number from 1 to 4, were observed in 60% of anaphases II. Hexaploid pollen stainability (81%) was the same as in the tetraploid plants used as control (80%). The pollen grains were very variable in diameter (μ) and therefore two classes were distinguished: a smaller (diameter μ. 25.5) and a larger one (diameter μ 40.0). Such variability probably means that the hexaploid plant produces many unbalanced gametes which, in association with mei..
    • …
    corecore