1,409 research outputs found

    Direct numerical simulation of compressible free shear flows

    Get PDF
    Direct numerical simulations of compressible free shear layers in open domains are conducted. Compact finite-difference schemes of spectral-like accuracy are used for the simulations. Both temporally-growing and spatially-growing mixing layers are studied. The effect of intrinsic compressibility on the evolution of vortices is studied. The use of convective Mach number is validated. Details of vortex roll up and pairing are studied. Acoustic radiation from vortex roll up, pairing and shape oscillations is studied and quantified

    Relations between two-point correlations and pressure strain terms

    Get PDF
    The structure of the two-point spatial correlations (velocity-velocity, velocity-scalar, and scalar-scalar) were studied with a view to improve turbulence closure models. The linear model for the two-point correlations proposed by Naot provides a method of including the information about the turbulence structure in the turbulence models. The assumptions and adequacy of this model were tested against the homogeneous shear flow simulation data base. The model performs poorly in some details and it is suggested how it may be improved. The models were also tested for rapid pressure-strain terms in a variety of flows including axisymmetric expansion and contraction flows, homogeneous shear flow, channel flow, and boundary layer

    Hierarchical Cross-Modal Talking Face Generationwith Dynamic Pixel-Wise Loss

    Full text link
    We devise a cascade GAN approach to generate talking face video, which is robust to different face shapes, view angles, facial characteristics, and noisy audio conditions. Instead of learning a direct mapping from audio to video frames, we propose first to transfer audio to high-level structure, i.e., the facial landmarks, and then to generate video frames conditioned on the landmarks. Compared to a direct audio-to-image approach, our cascade approach avoids fitting spurious correlations between audiovisual signals that are irrelevant to the speech content. We, humans, are sensitive to temporal discontinuities and subtle artifacts in video. To avoid those pixel jittering problems and to enforce the network to focus on audiovisual-correlated regions, we propose a novel dynamically adjustable pixel-wise loss with an attention mechanism. Furthermore, to generate a sharper image with well-synchronized facial movements, we propose a novel regression-based discriminator structure, which considers sequence-level information along with frame-level information. Thoughtful experiments on several datasets and real-world samples demonstrate significantly better results obtained by our method than the state-of-the-art methods in both quantitative and qualitative comparisons

    Evolution of isolated turbulent trailing vortices

    Get PDF
    In this work, the temporal evolution of a low swirl-number turbulent Batchelor vortex is studied using pseudospectral direct numerical simulations. The solution of the governing equations in the vorticity-velocity form allows for accurate application of boundary conditions. The physics of the evolution is investigated with an emphasis on the mechanisms that influence the transport of axial and angular momentum. Excitation of normal mode instabilities gives rise to coherent large scale helical structures inside the vortical core. The radial growth of these helical structures and the action of axial shear and differential rotation results in the creation of a polarized vortex layer. This vortex layer evolves into a series of hairpin-shaped structures that subsequently breakdown into elongated fine scale vortices. Ultimately, the radially outward propagation of these structures results in the relaxation of the flow towards a stable high-swirl configuration. Two conserved quantities, based on the deviation from the laminar solution, are derived and these prove to be useful in characterizing the polarized vortex layer and enhancing the understanding of the transport process. The generation and evolution of the Reynolds stresses is also addressed

    Vortex-induced disturbance field in a compressible shear layer

    Get PDF
    The disturbance field induced by a small isolated vortex in a compressible shear layer is studied using direct simulation in a convected frame. The convective Mach number, M(sub c), is varied from 0.1 to 1.25. The vorticity perturbation is rapidly sheared by the mean velocity gradient. The resulting disturbance pressure field is observed to decrease both in magnitude and extent with increasing M(sub c), becoming a narrow transverse zone for M(sub c) greater than 0.8. A similar trend is seen for the perturbation velocity magnitude and for the Reynolds shear stress. By varying the vortex size, we verified that the decrease in perturbation levels is due to the mean-flow Mach number and not the Mach number across the vortex. At high M(sub c), the vortex still communicates with the edges of the shear layer, although communication in the mean-flow direction is strongly inhibited. The growth rate of perturbation kinetic energy declines with M(sub c) primarily due to the reduction in shear stress. For M(sub c) greater than or equal to 0.6, the pressure dilatation also contributes to the decrease of growth rates. Calculation of the perturbation field induced by a vortex doublet revealed the same trends as in the single-vortex case, illustrating the insensitivity of the Mach-number effect to the specific form of initial conditions
    corecore