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Relations Between Two-Point
Correlations and Pressure Strain Terms

By MICHA WOLFSHTEIN 1 and SANJIVA K. LELE 2

We study the structure of the two-point spatial correlations (velocity-velocity,

velocity-scalar and scalar-scalar) with a view to improve turbulence closure models.

The linear model for the two-point correlations proposed by Naot et al. provides

a method of including the information about the turbulence structure in the tur-

bulence models. We test the assumptions and adequacy of this model against the

homogeneous shear flow simulation data base. The model performs poorly in some

details and we suggest how it may be improved. We also test the models for rapid

pressure-strain terms in a variety of flows including axisymmetric expansion and

contraction flows, homogeneous shear flow, channel flow and boundary layer.

Introduction

Two-point correlations are often considered to include much information on the

structure of turbulence, and on the modeling of various terms in the equations

governing turbulent quantities such as the Reynolds stresses or the turbulent heat

fluxes. In particular, the rapid pressure-velocity gradient terms in the Reynolds

stress equations or pressure-temperature term in the heat flux equations, as well

as the viscous decay terms of these equations may be exactly calculated if the

corresponding two-point correlations are known with sufficient accuracy. It was

therefore the purpose of the present project to study the two-point correlations, and

to improve turbulence closure models for pressure terms by a better understanding

of the two-point correlations.

The report is organized in three sections. The first section contains some general

observations on two-point correlations; Section 2 contains the assessment of linear

two-point correlation models, which is followed by our study of linear pressure-strain

models in Section 3. Finally, some conclusions from the present work are presented.

1. Two-point correlations

Two-point correlations (velocity-velocity, velocity-scalar, scalar-scalar) were ex-

amined for homogeneous shear and channel flows. The primary focus was on the

homogeneous shear case due to its simplicity. The numerical data base generated

by Rogers et al. (1986) provided the "raw data." The C128 simulation series was

studied in most detail. The simplest case is that of scalar-scalar correlation in a
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homogeneous shear flow. The flow is in the z-direction, with a uniform velocity

gradient in the y-direction. Uniform scalar gradients were applied in the z-, y-, and

z-directions, further referred to as scalars A, B, and C, respectively. Details of the

simulations may be found in Rogers et al. (1986). Contour plots of the scalar-scalar

two-point correlations in the z-y plane at nondimensional time St = 12 are shown

in Figs. la, b, and c for the three corresponding temperature gradients. All cases

show an inclination of about 15°-20 ° with respect to the z-axis. This inclination

appears to represent the influence of dU/dy (mean shear). At e_b_'er nennHmen -

sionai times the correlations show a steeper angle. This behavior is similar to that

observed by Rogers et al. (1986) for vorticity correlations. Correlation contours

in the y-z plane (not shown) are nearly elliptical, with the direction of the scalar

gradient defining the major axis. The influence of mean shear is also clearly evident

in the contours of the velocity-scalar correlations uB and wC when plotted in the

z-y plane (not shown). The influence of the mean scalar gradient on the velocity-

scalar correlations is better seen in the y-z plane. In Fig. 2 the correlations vB and

wC are plotted in the y-z plane at nondimensional time St = 12. The correlations

decrease more slowly in the direction of the applied scalar gradient, a feature also

noted in the scalar-scalar correlations.

The contours of the velocity-velocity two-point correlations uu, vv and ww in

plane z-y are shown in Fig. 3. While the uu and _ show an inclination of about

22 ° the _-_ does not show this orientation. This suggests a strong influence of the

mean velocity gradient dU/dy on the velocity-velocity two point correlations. It

may be noted that the derivation of the linear pressure-strain models (as presented

by Naot et a/.) assumes no direct dependence of the two point correlations on the

mean velocity gradients.

Finally, the channel flow results of the two-point correlations with separation vec-

tor in the y-direction show asymmetries not possible in the homogeneous shear case.

The influence of the wall appears to be quite persistent, and leads to asymmetries

in the correlations. It may be noted that some of these features are well described

by a model proposed by Hunt (details may be found in his report in the present

volume).

The principal conclusion from this part of the study is that the two-point correla-

tions (velocity-velocity, velocity-scalar, and scalar-scalar) show strong dependence

not only on their single-point analogs but also on the mean velocity gradients and

mean scalar gradient. Thus models which inadequately represent these dependen-

cies may not be very successful.

2. Linear two-point correlation model

The two-point correlations may be represented by a model in which they are

linearly related to the corresponding single-point correlations by arbitrary functions

of r, the magnitude of the separation vector only. One such function is required for

scalar-scalar correlation, two for scalar-velocity correlations, and six for velocity-

velocity correlations (but three of these are related to the other three by continuity

relations. Such models have been proposed by Naot et al. (1973) for the velocity-

velocity correlations and by Miklavic and Wolfshtein (1987) for the velocity-scalar



Two-Point Correlations and Pressure-Strain Terms 223

and scalar-scalar correlations. We tried to fit the data for the homogeneous shear

case to this model. Typical results for scalar-velocity correlation functions are shown

in Fig. 4 for functions G and R.

The different curves correspond to different combinations of profiles of the two-

point correlations (from simulations) used to obtain the model function. Consider-

ing function G, which contains the isotropic part of the correlation, most (but not

all) profiles appear to give similar results for small separations, but not for large

separations. The function R representing the non-isotropic part has small values

for the small separations, and becomes important only for larger separations, and

there it shows unacceptable scatter. Three velocity-velocity model functions (not
shown) show a very similar behavior.

We did not have sufficient time to test the validity of the linear two-point corre-

lation model in other flow fields. However, examination of the governing equations,

as well as results on the rapid pressure-strain term (to be described in Section

3) suggest that the two-point correlation model may perform reasonably well for

axially-symmetrical turbulence (in particular for compression).

The linear models tested here can be considerably improved by accounting for

the dependence of the two-point correlations on the mean velocity gradients, and

in addition on the mean scalar gradient for correlations involving the scalar fields.

Our study suggests that both the irrotational and rotational components of the

mean deformation rate should be included in such extensions. Detailed exploration
of these possibilities was not conducted.

3. Linear pressure-strain model

We considered here the model of Naot, Shavit and Wolfshtein (1973, hereafter

referred to as NSW ) or that of Launder, Reece and Rodi (1975, hereafter referred

to as LRR) (the two models are identical, although the derivation is quite different).

In both models the rapid pressure-strain terms are related to the Reynolds stresses

and velocity gradients by a single coefficient _b (for NSW) or 6'2 (for LRR). The

test here was to calculate the value of q_ corresponding to different Reynolds stress

components from the simulation data base for the rapid term in various flows.

In Figs. 5a and b, the calculated value of the NSW coefficient _bis plotted against

total strain for the axisymmetric expansion and contraction flows, respectively. The

data base used was from Lee et al. (1985) and the simulation details may be found

there. The scatter is acceptable, but (at least in the compression) the value of _b

changes with the strain (which corresponds to time in this case). This situation is

typical for all the compression cases studied, but not to all expansion cases.

In the case of shear flows it was impossible to get a single value of _b(from different

Reynolds stress components, indicated as the subscript on _b in the figures). The

behavior of the homogeneous shear flow is very similar to the plane channel and

boundary layer shown in Figs. 6a and b, respectively. The _b values obtained from

different stress components differ a lot amongst each other but do not change much

with the distance from the wall (in the log- layer). These results make the linear

model unsuitable for shear flows. However, if we do not require tensorial symmetries
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in the model, it is possible to use different values of qb for different components. In

this case it may be possible to use such a linear model.

We tried to seek a correlation of the total pressure terms with the three model

constants suggested by NSW. The coefficients/_, 7, A were computed for the homo-

geneous shear case. This model appears to be a logical choice, as most coefficients

do not change rapidly as a function of the nondimensional time St.

An even better result is obtained if we consider the combined total pressure

Conclusions

We now summarize our conclusions from the present work. Linear two-point

correlation models appear to be imperfect even for simple turbulent flows. For shear

flows it is necessary to relate the two-point correlations not only to the Reynolds

stresses, but also to all mean velocity gradients and mean scalar gradients. Even

so, it may be necessary to use nonlinear modeling to account for asymmetries.

The current linear models for the pressure-strain terms (in the models considered)

can work only if different values of the coefficient _bare used for each direction, but

then the evolution of _b and its spatial variation is a serious problem. Considerable

improvement may be obtained if we consider the total pressure-strain terms. The

models work even better when the total pressure-strain terms are combined with

the viscous decay terms.

With everything said, we should bear in mind that all these conclusions are based

o1: low Reynolds number turbulence. It is desirable to confirm these conclusions by

comparison with Large Eddy Simulations at higher Reynolds numbers.
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FIGURE 1. Iso-correlation contours of scalar-scalar two-point correlation in x-y

plane at St = 12. a) Scalar gradient in z-direction (Scalar-A); b) Scalar gradient

in y-direction (Scalar-B); c) Scalar gradient in z-direction (Scalar-C).
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FIGURE 2. Iso-correlation contours of velocity-scalar two-point correlation in y-z

plane at St = 12. a) vB correlation; b) wC correlation.
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FIGURE 3. Iso-correlation contours of velocity-velocity two-point correlation in

z-y plane at St = 12. a) h--d correlation; b) _i_ correlation; c) _-_ correlation.
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FIGURE 4. Two-point scalar-velocity correlation mode] functions for uniform

shear flow at St = 12. a) Different estimates of the model function G; b) Differentestimates of the model function R.
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FIGURE 5. Values of the NSW coefficient _b in velocity-velocity two-point cor-

relation model for axisymmetric turbulence, a) Expansion flow; b) Contraction
_]OW.
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FIGURE 6. Values of the NSW coefficient _b in velocity-velocity two-point correla-
tion model, a) Channel flow; b) Boundary layer.


