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Abstract

In this work, the temporal evolution of a low swirl-number turbulent Batchelor vortex is studied

using pseudo-spectral direct numerical simulations. The solution of the governing equations

in the vorticity-velocity form allows for accurate application of boundary conditions. The

physics of the evolution is investigated with an emphasis on the mechanisms that influence the

transport of axial and angular momentum. Excitation of normal mode instabilities gives rise

to coherent large scale helical structures inside the vortical core. The radial growth of these

helical structures and the action of axial shear and differential rotation results in the creation

of a polarized vortex layer. This vortex layer evolves into a series of hairpin-shaped structures

that subsequently breakdown into elongated fine scale vortices. Ultimately, the radially outward

propagation of these structures results in the relaxation of the flow towards a stable high-swirl

configuration. Two conserved quantities, based on the deviation from the laminar solution, are

derived and these prove to be useful in characterizing the polarized vortex layer and enhancing
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the understanding of the transport process. The generation and evolution of the Reynolds

stresses is also addressed.
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1 Introduction

Coherent large scale vortices are present in many flows of physical and engineering interest

such as tornadoes, airplane trailing vortices and swirling jets. Many such vortices are highly

persistent, and therefore, the need to understand their evolution and decay is of considerable

importance. In this work, the temporal evolution of an isolated turbulent Batchelor vortex is

investigated. This flow is roughly representative of an airplane trailing vortex and is charac-

terized by axisymmetric mean axial and azimuthal vorticity distributions given by qe−r2

and

re−r2

, respectively. The swirl number q sets the relative magnitudes of the axial and azimuthal

velocity distributions.

The temporal linear normal mode stability (using perturbations of the form U(r)ei(kx+mθ−ωt),

where k is the axial wavenumber, m is the azimuthal wavenumber and ω = ωr + iωi, with the

real part representing the frequency and the imaginary part ωi representing the growth rate) of

this flow has been extensively studied ([1, 2, 3, 4, 5] etc.) and it is well recognized that strong

inviscid helical instabilities are present for q < 1.5. These modes are unstable in the pure-jet

condition (q = 0), present the highest growth levels near q ≈ 0.5, and are ultimately stabilized

for high swirl levels (q ≈ 1.5). Stewartson and Brown [3] discovered a class of centre-modes,

that lie very close to the neutral stability curve and are stabilized for q > 2.31. Heaton [4]

shows that an infinite family of unstable centre-modes modes exist for q < 2.31. In the vis-

cous case, unstable centre-modes have been shown to exist [5] at all swirl numbers. However,

akin to the centre-modes in the inviscid case, the amplification rate of these modes are much

smaller than that of the strong inviscid modes that prevail for q < 1.5. Transient growth of

instabilities has been studied [6, 7], but appears to be important only in cases in which the

normal mode instabilities are relatively weak. Spatial and spatio-temporal stability of this flow

has also been studied [8, 9], but is not relevant to the current work since the focus is on the

temporal evolution.

Turbulent evolution of a q = 1.0 Batchelor vortex has been studied using DNS and LES

[10, 11, 12] and it has been established that while the helical normal mode instabilities play a

dominant role in the early stages of the evolution, the non-linear interactions with the mean flow

result in a saturation (during which the axial velocity has diminished significantly) and eventual

decay. The initial swirl in this case is moderate enough to cause growth of the instabilities,

but the relaxation to a stable high q configuration is very rapid. Delbende et al. [13] studied

the non-linear evolution of single unstable helical modes over a range of swirl numbers and also
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confirm the saturation of the growth rate. Further, they show that for 1 < q < 1.5, the vortex

ultimately relaxes towards an axisymmetric state. For lower values of swirl, it evolves into an

array of smaller coherent vortices.

In this work, the temporal non-linear and turbulent evolution of a q = 0.5 Batchelor vortex

is considered. The swirl number is in the range corresponding to the most amplified normal

mode instabilities. High resolution pseudo-spectral DNS of the vorticity transport equations is

performed along with an accurate treatment of the boundary conditions. The objective of the

present study is to enhance the present understanding of the evolution process and to obtain

physical insight into the mechanisms of turbulent transport of axial and angular momentum.

2 Methodology and problem set up

Many of the existing computational works (for instance, [10, 14]) on trailing vortices assume

periodicity in the cross-stream directions. This means that the tangential velocity (and hence,

the circulation) has to vanish at the boundaries, thus making the vortex unstable according to

Rayleigh’s centrifugal stability criteria [15]. In addition, an unphysical strain field will be set

up by the image vortices. Pradeep et al. [16], demonstrate a computational case in which a

trailing vortex is shown to be destabilized as a result of the application of transverse periodic

boundary conditions. Alternately, Delbende et al. [13] decompose the velocity to a laminar

part and a perturbation from the laminar solution and assume periodicity in the cross-stream

direction for the perturbations. This can, however, potentially affect the solution of situations

in which the pressure/velocity fluctuations can reach the boundary.

In the present work, the vorticity form of the incompressible Navier Stokes equations is

solved using a pseudo-spectral approach. The rotational form of the vorticity transport equa-

tions is given by:
∂ω

∂t
+ ∇× (ω × u) = ν∇2

ω (1)

The advantage of using these equations is that for a spatially compact distribution of the

vorticity in the cross-flow direction, both the linear and non-linear terms are spatially compact,

and hence, periodicity can be assumed. It has to be mentioned that this approach allows

for non-periodic irrotational mean flow and perturbations at the boundary. A novel way of

handling the boundary conditions in such an approach was proposed by Rennich and Lele

[17]. This method is general and can be used for flows in which the vorticity is compact in

the two unbounded dimensions and the third direction is periodic. In essence, the velocity v
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is decomposed into a vortical part and an irrotational part. At the cross-stream boundaries,

where the vortical component is zero, the velocity is given by

v = ∇φ + (A/2πr)eθ + Bex, (2)

where, A is the mean axial circulation and B ensures that the axial velocity in the potential

region is zero. The velocity potential φ is obtained, in terms of Bessel functions, by employing

a matching procedure along a cylindrical surface aligned with the longitudinal direction. The

axial direction is assumed to be periodic. In addition to accurately representing the boundary

conditions, this method proves to be highly efficient, since the boundaries of the computational

domain can be close to the region of interest, i.e. commensurate with the compactness of the

vorticity field. This methodology has been previously utilized in a related pilot work [18] to

study the evolution of Batchelor vortices over a range of swirl numbers.

The initial base flow condition (vθ is the tangential velocity and vx is the axial velocity) is

given by:

vθ =
vo

√
α

r

(
1 − e−αr2

)
, vx =

vo

q
e−αr2

, (3)

where, q = 0.5 (highly unstable normal-mode configuration) and vo, 1/
√

α are reference velocity

and length scales, respectively. The Lamb’s constant α = 1.25643 is used such that the initial

core-radius (identified as the radial location of peak vθ) is rco = 1. For all the plots, time is

non-dimensionalized by the ‘turnover time’ T = 2πvo/rco. The Reynolds number (defined as

Γ/ν = 2πvo/
√

α/ν) was set at 8000. A domain of size 40 × 152 was discretized on a mesh of

dimension 512×1922. The cross-stream dimension (15 times the original core-radius) was chosen

based on the distance to which the vortical disturbances propagate within the temporal interval

of interest. The axial dimension was selected such that the simulation could represent multiple

periods of the most unstable normal mode (the wavelength of which roughly corresponds to 6

times the original core-radius). An isotropic turbulence field made compact in the cross-stream

directions by a Gaussian function (further details in Appendix A) was added to the base flow

on maturation. Runs with varying turbulence intensities and spectral content were performed

and it was established that the qualitative features of the evolution remained similar as long as

the initial intensity of the turbulence kinetic energy was less than roughly 2% of the mean flow

kinetic energy. In this paper, a representative run of intensity 0.001% will be analyzed. This

will be referred to as Case I (Isotropic). Turbulence and mean flow statistics are obtained by

averaging in the axial and azimuthal directions.
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To obtain a better qualitative understanding of various aspects of the evolution, a calcula-

tion, termed Case E (further details in Appendix B) starting from the most unstable Eigen-

function (m = −2, k = 1 from linear normal mode theory) will also be utilized. Case E is a

helically symmetric flow[13].

3 Evolution

The temporal evolution of certain global quantities for Case I is shown in Fig. 1. As has been

observed previously for a higher swirl number (q = 1) Batchelor vortex [10, 11], the turbulence

kinetic energy shows a sharp growth phase followed by a saturation of the instabilities and

eventual decay (Fig. 1a), gradually returning the vortex to a stable state. Spectral analysis

revealed that most of the energy during the growth phase is concentrated in the most unstable

normal mode (axial wavenumber ≈ 1 and azimuthal wave number ≈ −2), a fact that was also

confirmed by flow visualization. For case E, the initial growth rate was found to match the

results of the normal mode stability analysis (refer Appendix B). The peak axial velocity (and

hence, the azimuthal vorticity) decays more rapidly than the peak azimuthal velocity (refer

Fig. 1b, in which all the quantities are normalized by the value at t=0), resulting in a more

stable configuration (or a higher q) at later times. Figure 1c shows that the core radius (radial

location of peak tangential velocity) rapidly increases during the saturation phase. As will be

seen later, this corresponds to a change in core structure. Also shown is the ‘dispersion radius’,

which is qualitatively the edge of the turbulent region. This is quantitatively defined as the

maximum radius at which the magnitude of the local vorticity |ω| > 0.005|ω|max, where, |ω|max

is the maximum vorticity in the spatial field. This is an important measure of the extent of

momentum transfer and is seen to grow rapidly even during the decay phase.

During the growth phase, instability modes are excited inside the core and most of the energy

of the turbulence is concentrated in the form of helical structures. These helical structures

continue to grow and propagate radially outward, until the differential rotation that persists

outside the core region acts to create azimuthally aligned fine-scale structures. Figure 2 shows

an axial view of the instantaneous vorticity magnitude iso-surfaces during the decay phase.

Outside the core, vorticity is filamented into fine-scale spirals that are predominantly aligned in

the azimuthal direction. As will be seen from the plots of mean axial and azimuthal vorticity, the

outermost ωx structures are generally of a negative sense, and the corresponding ωθ structures

are of a positive sense. These fine scale structures are distinctly different from the largely
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coherent motion inside the core and their radially outward advection is critical to the eventual

stabilization of the core flow (their proximity is capable of exciting bending waves on the core

structure as discussed in [19]) and transport of momentum to the exterior of the flow. The

origin, characteristics and evolution of these structures will be investigated in detail in the

following sections.

3.1 Evolution of single normal mode

The qualitative features of the turbulent evolution can be better understood if the evolution of

a single normal mode (Case E) is considered (Figs. 3,4). In Case E, as the helical instability (an

azimuthal ‘2’ mode) grows, the alternating positive and negative ‘lobes’ of perturbation axial

vorticity induce a radial velocity field that tends to distort the mean axial vorticity. Initially,

the vorticity near the axis is distorted elliptically, with the major axis aligned with the positive

perturbation lobes (Fig. 3b). Similar behavior is seen for the azimuthal vorticity (Fig. 4b).

Subsequently, the stretching of the major axis of the ellipse results in a migration of the mean

vorticity toward the positive lobes. The linear growth is maintained until enough vorticity has

migrated toward the positive perturbation lobes, that the symmetry of the perturbations is lost

due to non-linear interactions with the mean flow. (Figure 3c shows a representative instant,

at which the ‘2’ mode symmetry is clearly destroyed). The orientation of the axial vorticity

is such that the negative perturbation lobes are distorted and drawn toward the center of the

positive lobes. At this stage, and for the rest of the evolution (Figs. 3 c-f and 4 c-f), most of

the vorticity is contained in twin helical vortex structures. As these structures migrate to a

larger radius, differential rotation results in a peculiar orientation of features around the helical

structures. Since differential rotation tends to align radial vorticity into azimuthally-oriented

vorticity, a structure that is primarily oriented in the azimuthal direction is observed (most

evident in Figs. 4 e,f) in the periphery of the core region. The structure of this region is

schematized in Fig. 5 (a right handed coordinate system is used). Two distinct layers are

present: the outermost layer (light iso-surface) is of a +ve ωθ and −ve ωx orientation. The

inner layer (dark iso-surface) is of −ve ωθ and +ve ωx. This dipole vortex layer emerges during

the saturation phase and is convected radially outward during the decay phase (Figs. 3,4).

The presence of the mean negative ωx near the edge of the core corresponds to a circulation

overshoot (Fig. 6a). The presence of a local positive peak of ωθ, while exaggerated in Fig. 7b

can also be seen in Fig. 6c. At the latest investigated time for Case E, similar to the findings

in [13], the secondary vortical structures are convected away from the core and an apparently
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stable system composed of two helical lobes is observed. In Case I however, the breakdown of

the dominant helical structures appear to drive the system toward a stable high-q Batchelor

vortex configuration.

3.2 Turbulent Evolution

The evolution in the turbulent case is qualitatively similar to Case E, in that the helical modes

are excited, core vorticity is concentrated in helical lobes and the dipole vortex layer is present

at the periphery of the core. However, there are two distinct differences : (i) A multitude

of helical instability modes are excited although most of the energy is concentrated in the

most unstable normal mode, and, (ii) the dipole vortex layer breaks down into a multitude

of distinct hairpin-type vortex structures. The origin of the hairpin structures is shown in

Fig. 8: The dipole layer (Fig. 8a) has a structure similar to that shown in Fig. 5. However,

secondary instabilities cause this layer to ‘peel off’ into hairpin vortices (Figs. 8 b,c) with a

distinct structure (Fig. 9). The two legs of the hairpin are oriented such that the leg of the

hairpin with a larger x coordinate is of negative ωθ, whereas the other leg is of positive ωθ

and the head of the hairpin corresponds to a negative ωx. Also, the head of the hairpin is at

a larger radius than the legs, and hence, the associated negative ωx contributes to the mean

negative mean ωx at that radial location. Self-induction causes the hairpin to convect radially

outward. However, differential rotation tends to align it in the azimuthal direction - as the

head of the hairpin rotates at a slower rate than the tail because of its relative radial location.

The associated stretching intensifies ωθ, resulting in a generation of significant enstrophy in an

annular region around the core. Ultimately, the hairpin structures breakdown into elongated

vortices (Figs. 2, 8d). During the decay phase, these structures move radially outward as the

core vorticity tends toward a stable state. Throughout the simulation, at least 3-5 mesh points

were guaranteed across the core diameter of the hairpin structure. The energy and enstrophy

spectra were monitored such that there was no significant pile up of modes in the dissipation

range. In the following section, the presence and signature of these structures will be explained

from dynamic considerations. It has to be mentioned that while the presence of a circulation

overshoot implies that the flow is centrifugally unstable, the instabilities are not sustained in

the flow, and are instead convected radially outward.
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4 Conserved quantities

For mean axisymmetric flow that is homogeneous in the axial directions, it can be shown that,

∂

∂t

[∫ R

0

r2vθdr

]
= −[r2v′

rv
′

θ]r=R − ν
Γo

π
, and, (4)

∂

∂t

[∫ R

0

rvxdr

]
= −[rv′

rv
′

x]r=R (5)

These relations are derived by integrating the angular and axial momentum equations over the

radius. The former of the these relations is well known, for instance, eqn. 9 in [20]. In the

present computations, it was confirmed that r2v′

rv
′

θ and rv′

rv
′

x were both very small at large

radii, and hence, total axial momentum is conserved and the total angular momentum depends

only on the viscosity (and decays very slowly at large Reynolds numbers).

Presently, decomposing the instantaneous velocity field {vx, vr, vθ} into a laminar solution

(denoted by subscript l, which corresponds to the temporal evolution of the unperturbed Batch-

elor vortex) at that instant and a perturbation ‘δ’ (with {u, v, w} being the deviation of the

axial, radial and tangential velocity components, respectively, from the laminar solution),

{vx, vr, vθ}(x, r, θ, t) = {vx,l, 0, vθ,l}(r, t) + {u, v, w}(x, r, θ, t), (6)

the following relations can be derived:

∂

∂t

[∫ R

0

r2w̃dr

]
=

[
−r2ṽw + νr3 ∂

∂r

(
w̃

r

)]

r=R

(7)

and,
∂

∂t

[∫ R

0

rũdr

]
=

[
−rũv + νr

∂ũ

∂r

]

r=R

, (8)

where, ã =
∫ 2π

0
adθ. It was confirmed from the simulations that at for sufficiently large R

(few times rco), the right hand sides of the above equations are negligible (less than 0.002% of

maximum of the left hand side integrand), and therefore, the ‘δ’ angular and axial momentum

flux are conserved, and do not appear to depend on the viscosity. These relations are significant

because they can be used to study the transport of momentum in the flow field. Figure 10

shows the evolution of the aforementioned quantities (the LHS integrands) during the decay

process. Clearly, there is a net loss of momentum (relative to the laminar evolution) inside

the core and this is transferred to the exterior. It has to be recognized that the turbulent

transport of mean angular and axial momentum is solely dependent on the terms − ∂
∂r

r2v′

rv
′

θ

and − ∂
∂r

rv′

rv
′

x, respectively.

9



The ‘δ’ angular momentum can be expressed as

r2w̃(r) = r

∫ r

0

(ω̃x − ωx,l)rdr, (9)

Then if ω̃x(r) > ωx,l(r) + εx (a very plausible situation considering the fact that mean ωx

has convected to a larger radii from the axis) at some r = r1, then, ω̃x(r) < ωx,l(r) at some

r = r2 > r1. (εx > 0 is related to the initial perturbation angular momentum). This is because

the net ‘δ’ angular momentum has to be conserved and also due to the consistency condition

at r = 0 as well as the compactness of w̃. Evidence of this can be seen from Fig. 7a, in which,

at the earliest shown instant, a sudden drop in ωx (to a value below ωx,l) is observed near the

edge of the vortical region. At later instances, the corresponding ωx,l = 0 (because laminar

diffusion is much slower) and hence ωx has to drop to negative levels to satisfy conservation.

Similarly, conservation of the axial momentum flux implies that if ṽx(r) < vx,l(r)−εθ (again,

a possible situation because axial velocity decays at a higher rate than the laminar case) at

some r = r1, then, ṽx(r) > vx,l(r) at some r = r2 > r1. During the decay phase, since the

peak axial velocity in the core is likely to be at smaller levels (relative to the laminar case)

and the core radius is larger, the deficient momentum is likely to be regained outside the core.

The requirement of compactness then assures vx = 0 at some radius, resulting in a positive

ωθ = −∂vx/∂r. This can be seen in Fig. 6c and Fig. 7b.

5 Reynolds stress evolution

During the linear growth stage, all the components of the Reynolds stress are concentrated in

annuli, primarily inside the core. v′

r
2 and v′

x
2 peak at 0.6rc(t) while v′

θ
2 peaks around 0.3rc(t).

Similar observations have been previously reported for a vortex with q = 1.0 in [11], in which

a detailed analysis of the Reynolds stress budgets is also presented. (The transport equations

for the Reynolds stresses in tensor form are given in Appendix C). During saturation and

decay, these peaks move toward the vortex axis. As has been previously reported[21], v ′

r
2 > v′

θ
2

because the primary production terms are of opposite sign. While the respective production

terms of the Reynolds normal stresses peak away from the axis and dominate during the growth

phase, the pressure (strain and transport) and turbulent transport terms appear to be highly

significant during saturation and decay and are more active near the vortex axis. As a result,

the normal stresses are concentrated near the axis during decay. In the potential part of the

flow, the Corrsin-Kistler relation [22] v′

r
2 = v′

x
2 + v′

θ
2 is approximately satisfied.
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The primary Reynolds shear stress components, v ′

rv
′

θ and v′

xv
′

r initially peak around a radius

0.6rc(t), but continue to migrate in a radially outward direction during the growth phase.

The primary production terms in the Reynolds stress transport equations are, respectively:

Prθ = −srθ(v′

r
2 +v′

θ
2) and Pxr = ωθ(v′

x
2 +v′

r
2)/2. (Note: −srθ = −(∂vθ/∂r−vθ/r)/2 and ωθ are

primarily positive.) During the growth phase, the production terms are clearly dominant and

dependent on the Reynolds normal stresses. During the decay phase as seen in Fig. 11a, Prθ

decays rapidly inside the core and relatively slowly outside it (in fact, there is some growth). It

was also confirmed that the turbulent transport and pressure terms were not significant outside

the core. Therefore, the peak v′

rv
′

θ migrates outside the core (Fig. 11c), coinciding with the

location of the radially advecting vortex layer discussed in the previous section.

In contrast to Prθ, Pxr is primarily concentrated inside the core. This is because the former

depends on the mean strain rate (which extends to r → ∞), whereas the latter depends on

the vorticity (which is mainly concentrated within r < rc(t)). Accordingly, while the budget of

v′

rv
′

θ outside the core is dominated by the production terms, the radial outward spread of v ′

xv
′

r

is additionally dictated by the pressure and turbulent transport terms. Since the vorticity and

Reynolds normal stresses are significant inside the core, Pxr is dominant inside the core, and

hence, there is some generation of v′

xv
′

r near the axis. It was also observed that, in general, the

contribution of the turbulent transport terms is larger in the Reynolds normal stress budgets

than in the shear stress budgets.

It appears that the elongated fine scale vortices are more efficient in generating v ′

rv
′

θ corre-

lation than a v′

xv
′

r. Thus, angular momentum transport to the exterior is more efficient.

6 Generation of v′rv
′
θ

As mentioned earlier, efficient transport of angular momentum is governed by the generation

and transport of v′

rv
′

θ. In this section, the associated physical mechanisms are sought. For a

qualitative picture, consider Fig. 12a. The prominent vortical features are the two positive ωx

and the two negative ωx structures. If only the positive ωx structures were present, four v′

rv
′

θ

lobes (around each ωx structure) of alternating sign will be generated. The presence of the

additional dipole layer (distinguished by negative axial vorticity) results in an induced velocity

field that generates positive v′

rv
′

θ, mainly outside the core. A similar mechanism appears to be

in play in Case I (Fig. 12b), where toward the bottom left corner, the presence of the dipole

layer surrounding the mean positive ωx generates a local positive correlation of v ′

rv
′

θ. Also
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note that the presence of a secondary counter-rotating structure will result in an additional

strain-rate, thus strengthening Prθ.

7 Summary

A range of issues related to the temporal evolution of an initially unstable turbulent Batchelor

vortex were addressed. Considerable qualitative insight on the flow was obtained by studying

the non-linear evolution of a single instability mode. The formation of a dipole vortex layer was

shown to be critical to the evolution process. In the case of the turbulent vortex, the dipole

layer breaks down into distinct hairpin structures, which are ultimately seen to degenerate into

elongated fine scale vortices due to the action of straining caused by differential rotation. This

results in the generation of the r − θ Reynolds stress in an annular region surrounding the

core. The radially outward advection of these structures plays a key role in the transport of

angular momentum to the external flow and the restabilization of the vortex. The transverse

length scale of these structures is approximately 10− 20% of the inital core radius. Since these

structures are dynamically important, care should be taken to resolve them if Large Eddy

Simulations are attempted. The deviation of the mean angular and axial momentum from the

laminar solution was shown to be compact and conserved and this was seen to dictate the

characteristic signature of the dipole layer.

Appendix

A. Initial condition - Case I

The flowfield is initialized with an isotropic random-phase energy spectrum of the form E(k) ≈
k2e−k2

. Periodic boundary conditions are imposed and the flow was evolved until the skewness

and flatness reached steady values. The resulting flow-field quantities were then multiplied by

the function rne−r2

, where n = 0, 1, 2 were experimented with. Finally, the mean vorticity

was superposed on this flow. As mentioned in the paper, the flow evolution was found to be

qualitatively insensitive to the initial condition as long as the initial turbulence kinetic energy

was < 2% of the mean kinetic energy.
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B. Initial condition - Case E

For case Case E, the q = 0.5 Batchelor vortex was superimposed with the most unstable

eigenfunction corresponding to the axial wavenumber k = 1 and azimuthal wave number m =

−2. A spectral collocation code was used to generate the Eigenfunction. The kinetic energy

of the perturbation was set to 1 × 10−6 times that of the total kinetic energy. The growth

rate from linear stability analysis (non-dimensionalized by the peak axial velocity deficit and

initial core-radius) is ωi = 0.260805. As seen from Fig. 13, the initial growth rate from the

computation matches the theoretical prediction, but non-linear effects appear to rapidly limit

this value.

C. Reynolds stress budgets

As reported in Qin [11], the various terms in the Reynolds stress transport equations can be

written in the following from:

∂

∂t
(v′

iv
′

j) =
[
−Vk(v

′

iv
′

j),k
]
+

[
−1

2
(v′

iv
′

k(Vk,j + Vj,k) + v′

jv
′

k(Vk,i + Vi,k))

]

+

[
1

2
(v′

iv
′

k(Vk,j − Vj,k) + v′

jv
′

k(Vk,i − Vi,k))

]
+

[
p′(v′

i,j + v′

j,i)/ρ
]

+
[
−(v′

iv
′

jv
′

k),k

]
+

[
−(p′v′

jδik + p′v′

iδjk),k

]
+

[
ν(v′

iv
′

j),kk

]
+

[
2ν(v′

i,kv
′

j,k)
]

where, the terms in the square brackets represent convection, production, rotation, pressure

strain, turbulent transport, pressure transport, viscous diffusion and dissipation, respectively.

Note: the subscript (),k represents a partial derivative.

References

[1] M. Lessen, P. Singh, and F. Paillet, “The stability of a trailing line vortex. Part 1. Inviscid

theory,” Journal of Fluid Mechanics, 63, 753 (1974).

[2] E. Mayer, and K. Powell, “Viscous and inviscid instabilities of a trailing line vortex,”

Journal of Fluid Mechanics, 245, 91 (1992).

[3] K. Stewartson, and S. Brown, “Near-neutral centre-modes as inviscid perturbations to a

trailing line vortex,” Journal of Fluid Mechanics, 156, 387 (1985).

13



[4] C. Heaton, “Centre modes in inviscid swirling flows and their application to the stability

of the Batchelor vortex,” Journal of Fluid Mechanics, 576, 325 (2007).

[5] D. Fabre, and L. Jacquin, “Viscous instabilities in trailing vortices at large swirl numbers,”

Journal of Fluid Mechanics, 500, 239 (2004).

[6] C. Heaton, and N. Peake, “Transient growth in vortices with axial flow,” Journal of Fluid

Mechanics, 587, 271 (2007).

[7] D. Pradeep, and F. Hussain, “Transient growth of perturbations in a vortex column,”

Journal of Fluid Mechanics, 550, 251 (2006).

[8] C. Olendraru, A. Sellier, M. Rossi, and P. Huerre, “Inviscid instability of the Batchelor

vortex: Absolute-convective transition and spatial branches,” Physics of Fluids, 11, 1805

(1999).

[9] L. Parras, and R. Fernandez-Feria, “Spatial stability and the onset of absolute instability

of Batchelors vortex for high swirl numbers,” Journal of Fluid Mechanics, 583, 27 (2007).

[10] S. Ragab, and M. Sreedhar, “Numerical simulation of vortices with axial velocity deficits,”

Physics of Fluids 7, 549 (1995).

[11] J. Qin, “Numerical simulations of a turbulent axial vortex,” Ph.D. Dissertation, Purdue

University, (1998).

[12] C. Pantano, and L. Jacquin, “Differential rotation effects within a turbulent Batchelor

vortex,” Direct and Large-Eddy simulation IV, (ERCOFTAC Series, Vol. 8), Lavoisier,

(2002).

[13] I. Delbende, and M. Rossi, “Nonlinear evolution of a swirling jet instability,” Physics of

Fluids, 17, 044103 (2005).

[14] J. Marshall, and M. Beninati, “External turbulence interaction with a columnar vortex,”

Journal of Fluid Mechanics, 540, 221 (2005).

[15] Rayleigh, J., “On the dynamics of revolving fluids,” Proceedings of the Royal Society of

London Series A,” 93, 148 (1916).

14



[16] D. Pradeep, and F. Hussain, “Effects of boundary condition in the numerical simulations

of vortex dynamics,” Journal of Fluid Mechanics, 516, 115 (2004).

[17] S. Rennich, and S. Lele, “Numerical method for incompressible vortical flows with two

unbounded directions,” Journal of Computational Physics, 137 (1) 101 (1997).

[18] K. Duraisamy, and S. Lele, “DNS of temporal evolution of isolated vortices,” Proceedings

of the Center for Turbulence Research Summer Program, Stanford University, 2006.

[19] M. Melander, and F. Hussain, “Coupling between a coherent structure and fine-scale tur-

bulence,” Physical Review E, 48, 2669 (1993).

[20] S. Govindaraju, and P. Saffman, “Flow in a turbulent trailing vortex,” Physics of Fluids,

14, 2074 (1971).

[21] J. Chow, G. Zilliac, and P. Bradshaw, “Mean and turbulence measurements in the near

field of a wingtip vortex,” AIAA Journal, 35 (10), 491 (1997).

[22] S. Corrsin, and A. Kistler, “Free-stream boundaries of turbulent flows,” NACA Technical

Note TN 3133, (1954).

15



List of Figures

1 Evolution of global quantities for Case I . . . . . . . . . . . . . . . . . . . . . . 17

2 |ω| iso-surfaces shaded with axial and azimuthal vorticity contours for Case I at

t/T = 3.4. Light/Dark surface: +ve/ − ve. . . . . . . . . . . . . . . . . . . . . . 18

3 Axial vorticity contours for Case E. Negative vorticity shown as white patch /

dashed lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Azimuthal vorticity contours for Case E. Negative vorticity shown as white patch

/ dashed lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Case E (Saturation): ωθ iso-surfaces (light/dark shade +ve/ − ve. Also shown

is a schematic of vortex lines (dashed lines are at a smaller radius compared to

solid lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Evolution of mean quantities for Case I. Dashes: t/T = 2.6, Dash-Dot: t/T =

3.4, Solid: t/T = 5. Initial condition also shown . . . . . . . . . . . . . . . . . . 20

7 Evolution for Case E during the decay phase. Dashed line is earliest shown

instant and Solid line is latest. Laminar solution corresponding to earliest instant

also shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Case I: |ω| iso-surfaces superposed with ωθ contours. Dark shade corresponds to

negative ωθ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 Schematic of hairpin structure. Dashed lines depict axis of local vorticity vector 22

10 Evolution of ‘δ’ quantities for Case I. Dashes: t/T = 2.6, Dash-Dot: t/T = 3.4,

Solid: t/T = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

11 Reynolds stress and some budgets for Case I at times t/T = {2.6, 3.4, 5}, with

increasing time corresponding to decreasing peak production . . . . . . . . . . . 24

12 Representative instantaneous streamwise sections during the decay phase. Con-

tours of ωx and lines of v′

rv
′

θ shown. Negative ωx shaded dark, Negative v′

rv
′

θ

shown in dashed lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

13 Comparison of growth rate of kinetic energy in the k = 1 axial mode for Case E 25

16



0 2 4 6

10
−4

10
−2

10
0

t/T

K
in

et
ic

 E
ne

rg
y

Mean

Perturbation

(a) Mean and Turbulent kinetic energy

0 2 4 6
0

0.2

0.4

0.6

0.8

1

t/T

v
θ

v
x

ω
x

ω
θ

(b) Peak mean flow quantities

0 2 4 6
0

1

2

3

4

5

t/T

R
ad

iu
s

Core Radius

Dispersion Radius

Laminar

(c) Radial measures

Figure 1: Evolution of global quantities for Case I
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(a) ωx (b) ωθ

Figure 2: |ω| iso-surfaces shaded with axial and azimuthal vorticity contours for Case I at

t/T = 3.4. Light/Dark surface: +ve/ − ve.
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Figure 3: Axial vorticity contours for Case E. Negative vorticity shown as white patch / dashed

lines
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Figure 4: Azimuthal vorticity contours for Case E. Negative vorticity shown as white patch /

dashed lines
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Figure 5: Case E (Saturation): ωθ iso-surfaces (light/dark shade +ve/ − ve. Also shown is a

schematic of vortex lines (dashed lines are at a smaller radius compared to solid lines).
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Figure 6: Evolution of mean quantities for Case I. Dashes: t/T = 2.6, Dash-Dot: t/T = 3.4,

Solid: t/T = 5. Initial condition also shown
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Figure 8: Case I: |ω| iso-surfaces superposed with ωθ contours. Dark shade corresponds to

negative ωθ.
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Figure 11: Reynolds stress and some budgets for Case I at times t/T = {2.6, 3.4, 5}, with

increasing time corresponding to decreasing peak production
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Figure 13: Comparison of growth rate of kinetic energy in the k = 1 axial mode for Case E
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