867 research outputs found

    The Effects of Race, Place, Class, and Gender on Instructional Strategies in Kentucky\u27s Seventh Grade Science Classes: Individual and School Level Analyses

    Get PDF
    This study explored the relationship of student demographics to teaching method in Kentucky’s seventh grade science classrooms for 1997-98, based on performance assessment data (student level N = 21,499; school level N = 264). Students’ perceptions of seven instructional strategies from the KIRIS student questionnaires were placed into three groups: traditional, inquiry-based, and computer. At the student level, these strategies were regressed on race, gender, free/reduced lunch, urbanity of the district, Appalachian status, and Educational Service Region. At the school level, the three approaches were regressed on aggregate school data for these same variables. Findings indicated that demographic factors do affect teachers’ instructional strategies. Student-level results demonstrated numerous small but statistically significant influences on all three instructional approaches. Nearly all demographic effects disappeared when examined at the school level. The strongest finding was that schools with higher percentages of free/reduced lunch students reported more computer usage. Less computer use was reported for schools with more female students. Findings are discussed in light of science instruction, computers, and technological development for the rural south

    Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.

    Get PDF
    Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years

    Prospectus, September 23, 2004

    Get PDF
    https://spark.parkland.edu/prospectus_2004/1020/thumbnail.jp

    Report on the 2013 Rapid Assessment Survey of Marine Species at New England Bays and Harbors

    Get PDF
    Introduced species (i.e., non-native species that have become established in a new location) have increasingly been recognized as a concern as they have become more prevalent in marine and terrestrial environments (Mooney and Cleland 2001; Simberloff et al. 2005). The ability of introduced species to alter population, community, and ecosystem structure and function, as well as cause significant economic damage is well documented (Carlton 1989, 1996b, 2000; Cohen and Carlton 1995; Cohen et al. 1995; Elton 1958; Meinesz et al. 1993; Occhipinti-Ambrogi and Sheppard 2007; Pimentel et al. 2005; Thresher 2000). The annual economic costs incurred from managing the approximately 50,000 introduced species in the United States alone are estimated to be over $120 billion (Pimentel et al. 2005). Having a monitoring network in place to track new introductions and distributional changes of introduced species is critical for effective management, as these efforts may be more successful when species are detected before they have the chance to become established. A rapid assessment survey is one such method for early detection of introduced species. With rapid assessment surveys, a team of taxonomic experts record and monitor marine species–providing a baseline inventory of native, introduced, and cryptogenic (i.e., unknown origin) species (as defined by Carlton 1996a)–and document range expansions of previously identified species. Since 2000, five rapid assessment surveys have been conducted in New England. These surveys focus on recording species at marinas, which often are in close proximity to transportation vectors (i.e., recreational boats). Species are collected from floating docks and piers because these structures are accessible regardless of the tidal cycle. Another reason for sampling floating docks and other floating structures is that marine introduced species are often found to be more prevalent on artificial surfaces than natural surfaces (Glasby and Connell 2001; Paulay et al. 2002). The primary objectives of these surveys are to: (1) identify native, introduced, and cryptogenic marine species, (2) expand on data collected in past surveys, (3) assess the introduction status and range extensions of documented introduced species, and (4) detect new introductions. This report presents the introduced, cryptogenic, and native species recorded during the 2013 survey

    Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects.

    Get PDF
    BACKGROUND: VCL-CB01, a candidate cytomegalovirus (CMV) DNA vaccine that contains plasmids encoding CMV phosphoprotein 65 (pp65) and glycoprotein B (gB) to induce cellular and humoral immune responses and that is formulated with poloxamer CRL1005 and benzalkonium chloride to enhance immune responses, was evaluated in a phase 1 clinical trial. METHODS: VCL-CB01 was evaluated in 44 healthy adult subjects (22 CMV seronegative and 22 CMV seropositive) 18-43 years old. Thirty-two subjects received 1- or 5-mg doses of vaccine on a 0-, 2-, and 8-week schedule, and 12 subjects received 5-mg doses of vaccine on a 0-, 3-, 7-, and 28-day schedule. RESULTS: Overall, the vaccine was well tolerated, with no serious adverse events. Local reactions included mild to moderate injection site pain and tenderness, induration, and erythema. Systemic reactions included mild to moderate malaise and myalgia. All reactions resolved without sequelae. Through week 16 of the study, immunogenicity, as measured by enzyme-linked immunosorbant assay and/or ex vivo interferon (IFN)-gamma enzyme-linked immunospot assay, was documented in 45.5% of CMV-seronegative subjects and in 25.0% of CMV-seropositive subjects who received the full vaccine series, and 68.1% of CMV-seronegative subjects had memory IFN-gamma T cell responses at week 32. CONCLUSION: The safety and immunogenicity data from this trial support further evaluation of VCL-CB01

    Association, effects and validation of polymorphisms within the NCAPG - LCORL locus located on BTA6 with feed intake, gain, meat and carcass traits in beef cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a previously reported genome-wide association study based on a high-density bovine SNP genotyping array, 8 SNP were nominally associated (<it>P </it>≤ 0.003) with average daily gain (ADG) and 3 of these were also associated (<it>P </it>≤ 0.002) with average daily feed intake (ADFI) in a population of crossbred beef cattle. The SNP were clustered in a 570 kb region around 38 Mb on the draft sequence of bovine chromosome 6 (BTA6), an interval containing several positional and functional candidate genes including the bovine <it>LAP3, NCAPG</it>, and <it>LCORL </it>genes. The goal of the present study was to develop and examine additional markers in this region to optimize the ability to distinguish favorable alleles, with potential to identify functional variation.</p> <p>Results</p> <p>Animals from the original study were genotyped for 47 SNP within or near the gene boundaries of the three candidate genes. Sixteen markers in the <it>NCAPG-LCORL </it>locus displayed significant association with both ADFI and ADG even after stringent correction for multiple testing (P ≤ 005). These markers were evaluated for their effects on meat and carcass traits. The alleles associated with higher ADFI and ADG were also associated with higher hot carcass weight (HCW) and ribeye area (REA), and lower adjusted fat thickness (AFT). A reduced set of markers was genotyped on a separate, crossbred population including genetic contributions from 14 beef cattle breeds. Two of the markers located within the <it>LCORL </it>gene locus remained significant for ADG (P ≤ 0.04).</p> <p>Conclusions</p> <p>Several markers within the <it>NCAPG-LCORL </it>locus were significantly associated with feed intake and body weight gain phenotypes. These markers were also associated with HCW, REA and AFT suggesting that they are involved with lean growth and reduced fat deposition. Additionally, the two markers significant for ADG in the validation population of animals may be more robust for the prediction of ADG and possibly the correlated trait ADFI, across multiple breeds and populations of cattle.</p

    Use of Risk Models to Predict Death in the Next Year Among Individual Ambulatory Patients With Heart Failure

    Get PDF
    Importance: The clinical practice guidelines for heart failure recommend the use of validated risk models to estimate prognosis. Understanding how well models identify individuals who will die in the next year informs decision making for advanced treatments and hospice. Objective: To quantify how risk models calculated in routine practice estimate more than 50% 1-year mortality among ambulatory patients with heart failure who die in the subsequent year. Design, Setting, and Participants: Ambulatory adults with heart failure from 3 integrated health systems were enrolled between 2005 and 2008. The probability of death was estimated using the Seattle Heart Failure Model (SHFM) and the Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) risk calculator. Baseline covariates were collected from electronic health records. Missing covariates were imputed. Estimated mortality was compared with actual mortality at both population and individual levels. Main Outcomes and Measures: One-year mortality. Results: Among 10930 patients with heart failure, the median age was 77 years, and 48.0% of these patients were female. In the year after study enrollment, 1661 patients died (15.9% by life-table analysis). At the population level, 1-year predicted mortality among the cohort was 9.7% for the SHFM (C statistic of 0.66) and 17.5% for the MAGGIC risk calculator (C statistic of 0.69). At the individual level, the SHFM predicted a more than 50% probability of dying in the next year for 8 of the 1661 patients who died (sensitivity for 1-year death was 0.5%) and for 5 patients who lived at least a year (positive predictive value, 61.5%). The MAGGIC risk calculator predicted a more than 50% probability of dying in the next year for 52 of the 1661 patients who died (sensitivity, 3.1%) and for 63 patients who lived at least a year (positive predictive value, 45.2%). Conversely, the SHFM estimated that 8496 patients (77.8%) had a less than 15% probability of dying at 1 year, yet this lower-risk end of the score range captured nearly two-thirds of deaths (n = 997); similarly, the MAGGIC risk calculator estimated a probability of dying of less than 25% for the majority of patients who died at 1 year (n = 914). Conclusions and Relevance: Although heart failure risk models perform reasonably well at the population level, they do not reliably predict which individual patients will die in the next year

    Evaluation of Bovine chemerin (RARRES2) Gene Variation on Beef Cattle Production Traits1

    Get PDF
    A previous study in cattle based on >48,000 markers identified markers on chromosome 4 near the chemerin gene associated with average daily feed intake (ADFI) in steers (P < 0.008). Chemerin is an adipokine associated with obesity and metabolic syndrome in humans, representing a strong candidate gene potentially underlying the observed association. To evaluate whether the bovine chemerin gene is involved in feed intake, 16 markers within and around the gene were tested for association in the same resource population. Eleven were nominally significant for ADFI (P < 0.05) and two were significant after Bonferroni correction. Two and five SNP in this region were nominally significant for the related traits of average daily gain (ADG) and residual feed intake (RFI), respectively. All markers were evaluated for effects on meat quality and carcass phenotypes. Many of the markers associated with ADFI were associated with hot carcass weight (HCW), adjusted fat thickness (AFT), and marbling (P < 0.05). Marker alleles that were associated with lower ADFI were also associated with lower HCW, AFT, and marbling. Markers associated with ADFI were genotyped in a validation population of steers representing 14 breeds to determine predictive merit across populations. No consistent relationships for ADFI were detected. To determine whether cattle feed intake or growth phenotypes might be related to chemerin transcript abundance, the expression of chemerin was evaluated in adipose of 114 heifers that were siblings of the steers in the discovery population. Relative chemerin transcript abundance was not correlated with ADFI, ADG, or RFI, but associations with body condition score and yearling weight were observed. We conclude that variation in the chemerin gene may underlie observed association in the resource population, but that additional research is required to determine if this variation is widespread among breeds and to develop robust markers with predictive merit across breeds

    Prediction of preterm birth with and without preeclampsia using mid-pregnancy immune and growth-related molecular factors and maternal characteristics.

    Get PDF
    OBJECTIVE:To evaluate if mid-pregnancy immune and growth-related molecular factors predict preterm birth (PTB) with and without (±) preeclampsia. STUDY DESIGN:Included were 400 women with singleton deliveries in California in 2009-2010 (200 PTB and 200 term) divided into training and testing samples at a 2:1 ratio. Sixty-three markers were tested in 15-20 serum samples using multiplex technology. Linear discriminate analysis was used to create a discriminate function. Model performance was assessed using area under the receiver operating characteristic curve (AUC). RESULTS:Twenty-five serum biomarkers along with maternal age &lt;34 years and poverty status identified &gt;80% of women with PTB ± preeclampsia with best performance in women with preterm preeclampsia (AUC = 0.889, 95% confidence interval (0.822-0.959) training; 0.883 (0.804-0.963) testing). CONCLUSION:Together with maternal age and poverty status, mid-pregnancy immune and growth factors reliably identified most women who went on to have a PTB ± preeclampsia

    The FIREBIRD Instrument for Relativistic Electrons: Enabling Technologies for a Fast High-Sensitivity, Low-Power Space Weather Radiation Payload

    Get PDF
    Miniaturized instrument payloads on small satellite and nanosatellite platforms that are deployed in low Earth orbit are demonstrating cost effective weather monitoring platforms with increased temporal and spatial resolution compared to larger weather satellites. The NASA Earth Decadal Survey [1] states that improving the revisit time of microwave radiometers would significantly improve weather forecasting. Radiometers such as the Advanced Technology Microwave Sounder (ATMS) on Suomi National Polar-orbiting Partnership (Suomi-NPP) and the Joint Polar Satellite System-1 (JPSS-1), now NOAA-20, provide an average revisit rate of 7.6 hours; however, a constellation of six CubeSats in three orbital Low Earth Orbit (LEO) planes with microwave radiometers such as the Time-Resolved Observations of Precipitations structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission would provide a refresh rate of better than 60 minutes. In order to effectively use CubeSats in a constellation as a weather monitoring platform, calibration must be used to provide measurements consistent with state of the art measurements, such as ATMS that has a NeDT at 300K of 0.5-3.0K [2]. In this work, we use the Joint Center for Satellite Data Assimilation (JCSDA) Community Radiative Transfer Model (CRTM) to simulate brightness temperatures (https://www.jcsda.noaa.gov/projects_crtm.php), which are used to assess miniaturized microwave radiometer radiometric biases. CRTM is a fast radiative transfer model that uses Fortran functions, structure variables, and coefficient data of the modeled sensor to simulate radiances. The user inputs surface characteristics, scan angles, and atmospheric profiles from sources such as radiosondes, Numerical Weather Prediction (NWP) models, and Global Positioning System Radio Occultation (GPSRO) measurements. The output of CRTM is a simulated brightness temperature that is used to correct radiometric biases in order to meet required instrument NeDT performance. We use radiosonde, GPSRO, and NWP ERA-5 atmospheric profiles in CRTM and compare the results to ATMS brightness temperatures and find an average difference in brightness temperature of 1.95 K, which is comparable to ATMS Integrated Calibration/Validation System (https://www.star.nesdis.noaa.gov/icvs/status_NPP_ATMS.php) reports which show channel bias variations of up to 2 K. We take a similar approach to provide calibration for the Micro-sized Microwave Atmospheric Satellite-2A (MicroMAS-2A), a 3U CubeSat that was launched on January 11th, 2018. MicroMAS-2A carries a 1U 10-channel passive microwave radiometer that provides imagery near 90 and 206 GHz, temperature sounding near 118 GHz, and moisture sounding near 183 GHz. We develop an approach for comparing MicroMas-2A brightness temperatures to radiosonde, GPSRO, and NWP ERA5 atmospheric profiles. Due to the scarcity of GPSRO and radiosonde profiles near the MicroMAS-2A data segments, we determine that NWP models will be the best option for radiance validation. After the next stage of calibration of MicroMAS-2A is completed, we will compare CRTM simulated radiances from ERA profiles to the initial sensor data, with expected results of channel bias variations of \u3c 2 K
    corecore