16 research outputs found

    On totally geodesic submanifolds in the Jacobian locus

    Get PDF
    We study submanifolds of A_g that are totally geodesic for the locally symmetric metric and which are contained in the closure of the Jacobian locus but not in its boundary. In the first section we recall a formula for the second fundamental form of the period map due to Pirola, Tortora and the first author. We show that this result can be stated quite neatly using a line bundle over the product of the curve with itself. We give an upper bound for the dimension of a germ of a totally geodesic submanifold passing through [C] in M_g in terms of the gonality of C. This yields an upper bound for the dimension of a germ of a totally geodesic submanifold contained in the Jacobian locus, which only depends on the genus. We also study the submanifolds of A_g obtained from cyclic covers of the projective line. These have been studied by various authors. Moonen determined which of them are Shimura varieties using deep results in positive characteristic. Using our methods we show that many of the submanifolds which are not Shimura varieties are not even totally geodesic.Comment: To appear on International Journal of Mathematic

    The mapping class group and the Meyer function for plane curves

    Full text link
    For each d>=2, the mapping class group for plane curves of degree d will be defined and it is proved that there exists uniquely the Meyer function on this group. In the case of d=4, using our Meyer function, we can define the local signature for 4-dimensional fiber spaces whose general fibers are non-hyperelliptic compact Riemann surfaces of genus 3. Some computations of our local signature will be given.Comment: 24 pages, typo adde

    Complements of hypersurfaces, variation maps and minimal models of arrangements

    Full text link
    We prove the minimality of the CW-complex structure for complements of hyperplane arrangements in Cn\mathbb C^n by using the theory of Lefschetz pencils and results on the variation maps within a pencil of hyperplanes. This also provides a method to compute the Betti numbers of complements of arrangements via global polar invariants

    A whitehead theorem for long towers of spaces

    No full text
    corecore