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ON TOTALLY GEODESIC SUBMANIFOLDS IN THE

JACOBIAN LOCUS

ELISABETTA COLOMBO, PAOLA FREDIANI AND ALESSANDRO GHIGI

Abstract. We study submanifolds of Ag that are totally geodesic for
the locally symmetric metric and which are contained in the closure of
the Jacobian locus but not in its boundary. In the first section we recall
a formula for the second fundamental form of the period map Mg →֒ Ag

due to Pirola, Tortora and the first author. We show that this result
can be stated quite neatly using a line bundle over the product of the
curve with itself. We give an upper bound for the dimension of a germ
of a totally geodesic submanifold passing through [C] ∈ Mg in terms of
the gonality of C. This yields an upper bound for the dimension of a
germ of a totally geodesic submanifold contained in the Jacobian locus,
which only depends on the genus. We also study the submanifolds of Ag

obtained from cyclic covers of P1. These have been studied by various
authors. Moonen determined which of them are Shimura varieties using
deep results in positive characteristic. Using our methods we show that
many of the submanifolds which are not Shimura varieties are not even
totally geodesic.
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1. Introduction

1.1. Denote by Ag the moduli space of principally polarized abelian vari-
eties of dimension g, by Mg the moduli space of smooth curves of genus
g and by j : Mg → Ag the period mapping or Torelli mapping. Both Mg

and Ag are complex orbifolds (or smooth stacks) and Ag is endowed with
a locally symmetric metric, the so-called Siegel metric. One expects the
Jacobian locus, that is the image j(Mg) ⊂ Ag, to be rather curved with
respect to the Siegel metric. In particular, it should contain very few totally
geodesic submanifolds of Ag. Another reason for this expectation comes
from arithmetic geometry. Indeed for a special class of totally geodesic sub-
manifolds (Shimura varieties) it has been conjectured by Coleman and Oort
that for large genus no positive dimensional Shimura variety is contained in
the closure of the Jacobian locus (in Ag) and meets the Jacobian locus it-
self. Moonen [20] has proven that an algebraic totally geodesic submanifold
is a Shimura subvariety if and only if it contains a complex multiplication
point. For results on Shimura subvarieties contained in j(Mg) we refer to
[13, 20, 22, 25, 21, 1, 19, 15, 18].

Outside the hyperelliptic locus the period map is an orbifold immersion.
For g ≥ 4 the Jacobian locus j(Mg) has dimension strictly smaller than
Ag. Therefore it makes sense to compute the second fundamental form of
j(Mg) ⊂ Ag and to study its metric properties by infinitesimal methods. The
second fundamental form has been studied by Pirola, Tortora and the first
author [6], where an expression for it is given and it is proven that the second
fundamental form lifts the second Gaussian map, as stated in an unpublished
paper by Green and Griffiths [12]. In particular the computation of the
second fundamental form on ξp ⊙ ξp (where ξp is a Schiffer variation at the
point p on the curve) reduces to the evaluation of the second gaussian map at
the point p. These results have been used in [5] to compute the curvature of
the restriction to Mg of the Siegel metric. In [5] there is an explicit formula
for the holomorphic sectional curvature of Mg in the direction ξp in terms
of the holomorphic sectional curvature of Ag and the second Gaussian map.

It is much harder to use the formula in [6] to compute the second fun-
damental form on ξp ⊙ ξq when p 6= q. In fact the formula contains the
evaluation at q of a meromorphic 1-form on the curve, called ηp, which has
a double pole at p and is defined by Hodge theory. In general it seems rather
hard to control the behaviour of ηp, in a way to get constraints on the second
fundamental form.

1.2. In this paper we give a global and more intrinsic description of this
form. We show that as p varies on the curve the forms ηp glue to give a
holomorphic section η̂ of the line bundle KS(2∆), where S = C × C and
∆ ⊂ S is the diagonal. With this interpretation we are able to prove that
the second fundamental form coincides with the multiplication by η̂.

More precisely, fix a genus g, which will always be assumed greater than
3, and fix [C] ∈ Mg outside the hyperelliptic locus. The conormal bundle



ON TOTALLY GEODESIC SUBMANIFOLDS IN THE JACOBIAN LOCUS 3

of j : Mg ⊂ Ag at [C] can be identified with I2(KC), which is the kernel
of the multiplication map S2H0(C,KC) → H0(C, 2KC ). Hence the second
fundamental form can be seen as a map ρ : I2(KC) → S2H0(C, 2KC ). Let
S = C × C and let ∆ be the diagonal. By Künneth formula H0(S,KS) =
H0(C,KC )⊗H0(C,KC) and H

0(S, 2KS) = H0(C, 2KC )⊗H0(C, 2KC ). In
particular I2(KC) ⊂ H0(S,KS(−2∆)).

Theorem A. (See Theorem 3.13). The second fundamental form ρ is the

restriction to I2 of the multiplication map

H0(S,KS(−2∆)) −→ H0(S, 2KS) Q 7→ Q · η̂.

1.3. Based on these results on the second fundamental form we get some
constraints on the existence of totally geodesic submanifolds of Ag contained
in Mg. Since our methods are local in nature, the results apply to germs
of such submanifolds. We get upper bounds for the dimension of totally
geodesic germs passing through [C] ∈ Mg in terms of the gonality of the
curve C.

Theorem B. (See Theorem 4.3). Assume that C is a k-gonal curve of genus
g with g ≥ 4 and k ≥ 3. Let Y be a germ of a totally geodesic submanifold

of Ag which is contained in the jacobian locus and passes through j([C]) =
[J(C)]. Then dim(Y ) ≤ 2g + k − 4.

This immediately yields a bound which only depends on g.

Theorem C. (See Theorem 4.5). If g ≥ 4 and Y is a germ of a totally

geodesic submanifold of Ag contained in the jacobian locus, then dimY ≤
5
2(g − 1).

1.4. For low genus one can construct examples of totally geodesic submani-
folds contained inMg using cyclic covers of P1, see e.g. [7, 21, 25]. These are
in fact Shimura varieties. A complete list of the Shimura varieties that can
be obtained in this way has been given in [21] using deep results in positive
characteristic. With our methods we check directly that these examples are
indeed totally geodesic and we show that a large class of cyclic covers, which
are not in the list of Shimura varieties, are not even totally geodesic (see
Proposition 5.7 and Corollary 5.8).

1.5. Other works studying totally geodesic submanifolds contained in the
Jacobian locus include [26, 13, 8]. In particular Hain [13] proves the fol-
lowing. Let X be an irreducible symmetric domain and consider the locally
symmetric variety Γ\X (where Γ is a lattice). If there is a totally geodesic

immersion Γ\X → j(Mg), and if some additional conditions are satisfied,
then X must be the complex ball. De Jong and Zhang [8] prove a similar
result under milder conditions, but still retaining the irreducibility assump-
tion on X. The techniques used in these works are global and are based on
group cohomology and on a rigidity theorem for the mapping class group
due to Farb and Masur [9]. Our result instead applies to germs of totally
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geodesic submanifolds, since it is local in nature and does not require ir-
reducibility assumptions. The same local point of view is present in [17],
where the object of study are totally geodesic submanifolds contained in an
algebraic subvariety of a complex hyperbolic space form.

Acknowledgements. We wish to thank Fabrizio Andreatta and Bert
van Geemen for interesting conversations. The second and third authors
wish to thank the Max-Planck Institut für Mathematik, Bonn for excellent
conditions provided during their visit at this institution, where part of this
paper was written.

2. Notation and preliminary results

2.1. Second fundamental form. Denote by Ag the moduli space of prin-
cipally polarized abelian varieties of dimension g, byMg the moduli space of
smooth curves of genus g and by j :Mg → Ag the period mapping or Torelli
mapping. By the Torelli theorem j is injective. To study j one can fix a

level structure with n ≥ 3 and consider M
(n)
g

j(n)

→ A
(n)
g which is a smooth

map between manifolds. Since level structures play no role in what we are
doing, it is more appropriate to think of Mg and Ag as complex orbifolds
or smooth stacks, see e.g. [2, XII, 4]. The period map is smooth in the
orbifold sense. Moreover its restriction to the set of non-hyperelliptic curves
is an orbifold immersion [23]. By abuse of terminology we will henceforth
omit the word ”orbifold”. The moduli space Ag is endowed with the Siegel
metric, which is the metric induced on Ag from the symmetric metric on
the Siegel upper halfspace Hg. Outside the hyperelliptic locus we have the
sequence of tangent bundles:

0 → TMg → j∗
(

TAg

) π
→ N → 0,

whose dual, at [C] ∈Mg is

0 → I2 → S2H0(C,KC)
m
→ H0(C, 2KC ) → 0,

where I2 := I2(KC) is the set of quadrics containing the canonical curve and
m is the multiplication map (see [5] for more details). Denote by

II : S2T[C]Mg = S2H1(C, TC) → N[C]

the second fundamental form of the period map with respect to the Siegel
metric on Ag. Denote by

ρ : I2 → S2H0(C, 2KC )

the dual of II. We will refer both to II and to ρ as second fundamental
forms.

2.2. Schiffer variations. If C is a curve and x ∈ C, the coboundary of
the exact sequence 0 → TC → TC(x) → TC(x)|x → 0 yields an injection
H0(TC(x)|x) ∼= C →֒ H1(C, TC ). Elements in the image are called Schiffer
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variations at x. If (U, z) is a chart centred at x and b ∈ C∞
0 (U) is a bump

function which is equal to 1 on a neighbourhood of x, then

θ :=
∂̄b

z
·
∂

∂z

is a Dolbeault representative of a Schiffer variation at x. The map

ξ : TC → H1(C, TC) u = λ
∂

∂z
(x) 7→ ξu := λ2[θ]

does not depend on the choice of the coordinates. It is well known that
Schiffer variations generate H1(C, TC) [2, p.175].

Lemma 2.3. Let β ∈ H0(C, 2KC ) and let (U, z) be a chart centred at x ∈ C.

If β = f(z)(dz)2 on U , then β
(

ξ ∂
∂z

(x)

)

= 2πi f(0).

Proof.

β
(

ξ ∂
∂z

(x)

)

=

∫

C
β ∪ θ =

∫

U
f(z)dz ∧

∂̄b

z
= −

∫

U−{x}
∂̄

(

b(z)f(z)

z
dz

)

.

If ε > 0 is small enough, b ≡ 1 on {|z| ≤ ε}. Using Stokes and Cauchy
theorems we get

β
(

ξ ∂
∂z

(x)

)

= − lim
ε→0

∫

U∩{|z|>ε}

∂̄

(

b(z)f(z)

z
dz

)

= lim
ε→0

∫

|z|=ε

f(z)

z
dz = 2πif(0).

�

2.4. Gaussian maps. We briefly recall the definition of Gaussian maps for
curves. Let N and M be line bundles on C. Set S := C ×C and let ∆ ⊂ S
be the diagonal. For a non-negative integer k the k-th Gaussian or Wahl

map associated to these data is the map given by restriction to the diagonal

H0(S,N ⊠M(−k∆))
µk
N,M
−→ H0(S,N ⊠M(−k∆)|∆) ∼= H0(C,N ⊗M ⊗Kk

C).

We are only interested in the caseN =M . In this case we set µk,M := µkM,M .

With the indentification H0(S,N ⊠M) ∼= H0(C,N) ⊗ H0(C,M) the map
µ0,M is the multiplication map of global sections

H0(C,M) ⊗H0(C,M) → H0(C,M2),

which obviously vanishes identically on ∧2H0(C,M). Consequently ker µ0,M
= H0(S,M⊠M(−∆)) decomposes as ∧2H0(C,M)⊕I2(M), where I2(M) is
the kernel of S2H0(C,M) → H0(C,M2). Since µ1,M vanishes on symmetric
tensors, one usually writes

µ1,M : ∧2H0(M) → H0(KC ⊗M2).

If σ is a local frame for M and z is a local coordinate, given sections s1, s2 ∈
H0(C,M) with si = fi(z)σ, we have

µ1,M (s1 ∧ s2) = (f ′1f2 − f ′2f1)dz ⊗ σ2.(2.1)
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Consequently, the zero divisor of µ1,M (s1 ∧ s2) is twice the base locus of the
pencil 〈s1, s2〉 plus the ramification divisor of the associated morphism.

Again H0(S,M ⊠ M(−2∆)) decomposes as the sum of I2(M) and the
kernel of µ1,M . Since µ2,M vanishes identically on skew-symmetric tensors,
one usually writes

µ2,M : I2(M) → H0(C,M2 ⊗K2
C).

By µ2 we denote the second gaussian map of the canonical line bundle KC

on C:

µ2 := µ2,KC
: I2(KC) → H0(K4

C).

2.5. The form ηx and the second fundamental form. We now recall
the definition of ηx. Let C be a smooth complex projective curve of genus
g ≥ 4. Fix a point x ∈ C. The space H0(C,KC (2x)) is contained in the
space of closed 1-forms on C − {x}. The induced map H0(C,KC (2x)) →
H1(C−{x},C) is injective as soon as g > 0. By the Mayer-Vietoris sequence,
the inclusion C − {x} →֒ C induces an isomorphism H1(C,C) ∼= H1(C −
{x},C). Thus we get an injection

jx : H0(C,KC(2x)) →֒ H1(C,C).(2.2)

H1,0(C) is contained in the image of jx and h0(C,KC (2x)) = g + 1, so
j−1
x (H0,1(C)) is a line. If (U, z) is a chart centred at x, there is a unique
element ϕ in this line such that on U − {x}

ϕ =

(

1

z2
+ h(z)

)

dz

with h ∈ OC(U). (Applying Stokes theorem on C minus a disc around x
shows that the residue at x vanishes, so there is no term in 1/z.) Define a
linear map

ηx : TxC → H0(C,KC(2x))

by the rule

u = λ
∂

∂z
(x) 7−→ ηx(u) := λϕ.

We will often drop x and simply write ηu for ηx(u). An easy computation
shows that ηx does not depend on the choice of the local coordinate.

Theorem 2.6 ([6, Thm. 3.1], [5, Lemma 3.5]). Let C be a non-hyperelliptic

curve of genus g ≥ 4. Given points x 6= y in C and tangent vectors u ∈ TxC
and v ∈ TyC we have

ρ(Q)(ξu ⊙ ξv) = −4πi · ηx(u)(v)Q(u, v),

ρ(Q)(ξu ⊗ ξu) = −2πi · µ2(Q)(u⊗4).

This theorem is basic to the whole paper. For the reader’s convenience we
recall its proof.
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Proof. First of all we take w ∈ H1(C, TC) and we compute ρ(Q)(w) ∈
H0(C, 2KC ) for Q ∈ I2(KC). We can assume that there is a a one di-

mensional deformation X
f
→ ∆ with C = f−1(0) and w = κ( ∂

∂t), where
∆ = {|t| < 1} and κ is the Kodaira-Spencer map. Take a C∞ lifting Y of the
holomorphic vector field ∂

∂t . So we have a C∞ trivialization τ : ∆×C → X ,
τ(t, x) = τt(x) := Φt(x), where {Φt} is the flow of the vector field Y . Then
θ := ∂Y |C is a ∂̄-closed form in A0,1(C, TC) such that [θ] = w ∈ H1(C, TC ).
Denote by Ct the fibre of f over t and let ω(t) be a section of the Hodge
bundle, i.e. ∀t ∈ ∆, ω(t) ∈ H0(KCt). Since ω(t) is closed, also τ∗t (ω(t)) is
closed, so τ∗t (ω(t)) = ω + (α + dh)t + o(t), where ω := ω(0), α is harmonic
and h is a C∞ function. Denote by ∇GM the flat Gauss-Manin connec-
tion on R1f∗C. So we have ∇GM

∂/∂t[ω(t)]|t=0 = [α]. By Griffiths’ results (see

e.g. [29, pp. 234ff]) θ · ω = α0,1 + ∂h and κ( ∂
∂t ) · [ω] = [α0,1], where α0,1

is the (0, 1) component of α. Now assume that {ωi}i=1,...,g is a basis of
H0(KC). Take a quadric Q =

∑

i,j aijωi⊗ωj ∈ I2(KC). Denote by ∇1,0 the

Gauss-Manin connection on the Hodge bundle f∗ωX/∆, i.e. ∇1,0 = π∇GM ,

where π is the projection of H1(Ct,C) onto H0(Ct,KCt). Then for all i

we have ∇1,0
∂/∂t[ωi(t)]|t=0 = [αi

1,0]. Denote by ∇ the induced connection on

S2f∗ωX/∆. If Q̃(t) =
∑

i,j aij(t)ωi(t) ⊗ ωj(t) ∈ I2(KCt) is a section of the

conormal bundle such that Q̃(0) = Q, then

ρ(Q)(w) = m(∇ ∂
∂t
Q̃|t=0) =

∑

i,j

a′ij(0)ωiωj + 2
∑

i,j

aijα
1,0
i ωj.

Since
∑

i,j aij(t)ωi(t)ωj(t) ≡ 0, also its derivative at t = 0 vanishes, i.e.

2
∑

i,j aij(αi + dhi)ωj +
∑

i,j a
′
ij(0)ωiωj ≡ 0, and if we take the (1, 0) part

we have 2
∑

i,j aij(α
1,0
i + ∂hi)ωj +

∑

i,j a
′
ijωiωj ≡ 0, so

(2.3) ρ(Q)(w) = −2
∑

i,j

aijωj∂hi.

This is an instance of a Hodge-Gaussian map, see [6] and also [24, §4].
Now fix a point x ∈ C and a chart (U, z) centred at x. Let w be the

Schiffer variation ξ ∂
∂z

(x) at x ∈ C with Dolbeault representative θ := ∂̄b
z · ∂

∂z ,

where b ∈ C∞
0 (U) be a bump function equal to 1 on a neighbourhood of x.

Let ωi = fi(z)dz be the local expression of ωi in U . On C − {x} we have

θ · ωi =
fi
z ∂̄b, so α

0,1
i + ∂̄hi = ∂̄

(

bfi
z

)

. Set gi :=
bfi
z − hi. Then α0,1

i = ∂̄gi.

Define ηi := ∂g
i
.

Now we will show that
∑

aijωi∂hj = −
∑

aijωi
ηj . In the first place, note

that ηi is holomorphic in C−{x}. Indeed, αi is harmonic, thus ∂̄ηi = ∂̄∂gi =

−∂∂̄gi = −∂α0,1
i = 0. Hence,

∑

a
ij
ωi∂(

bfj
z ) =

∑

aijωi∂hj +
∑

aijωiηj is
holomorphic on C − {x}, because the first term is a holomorphic section
of 2KC by (2.3) and the second is holomorphic on C − {x} since ηj is
holomorphic. In a neighborhood of x where b ≡ 1, this expression has the
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form

∑

aijfi
∂

∂z

(

fj
z

)

dz2 =
∑

a
ij
fi

(

−
fj
z2

+
f ′j
z

)

dz2 = 0,

because
∑

aijfifj =
∑

aijfif
′
j = 0. So

∑

a
ij
ωi∂(

bfj
z ) is identically zero.

Thus we have

ρ(Q)(ξ ∂
∂z

(x)) = −2
∑

aijωi∂hj = 2
∑

aijωiηj .

Now we claim that ηi = −fi(x)ηx(
∂
∂z ). In fact η

i
∈ H0(KC(2x)), since on

U, where b ≡ 1, ηi has the form

ηi =

(

−
fi(x)

z2
+ ψi(z)

)

dz

with ψi(z) a holomorphic function, hence ηi is a meromorphic form, with a

double pole at x. By definition, ηi + α0,1
i = ∂gi + ∂̄gi = dgi, so

jx(ηi) = −[α0,1
i ] ∈ jx(H

0(KC(2x))) ∩H
0,1(C).

This proves the claim.
We can assume that the chart (U, z) contains also y. Applying Lemma 2.3

the first statement immediately follows for u = ∂/∂z(x) and v = ∂/∂z(y).
It is clear that this is enough. For the second statement it suffices to use
the local expression of µ2. �

Remark 2.7. We remark that Schiffer variations, the forms ηx, Q and
µ2(Q) are sections of vector bundles, but they become functions as soon as
a coordinate chart is fixed. Because of this many statements, like the one
above, are usually stated for simplicity, as if these sections were evaluated
at points instead of tangent vectors. We will follow this notation when it is
convenient. In the next section instead it is better to stick a more formal
notation.

3. The second fundamental form as a multiplication map

3.1. In this section we show that as x varies on the curve the form ηx varies
holomorphically in an appriopriate sense and gives rise to a section of a
vector bundle on C and to a corresponding section η̂ of the line bundle
KS(2∆) on S = C × C. The two main points are Theorem 3.13 and the
invariance of η̂ with respect to the action of Aut(C).

3.2. Let (U, z) be a chart centred at x ∈ C. Set u = ∂
∂z (x). It is a classical

result that there is a harmonic function fu ∈ C∞(C − {x}) such that fu =
−1/z+ g(z) on U −{x} for some g ∈ C∞(U). This function is unique up to
an additive constant and is called elementary potential. Its existence can be
proven for example using the (real) Hodge decomposition theorem and the
Weyl lemma (see e.g. [10, p. 46-48]) or using the Perron method (see e.g.
[16, p. 213ff]).
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Lemma 3.3. If fu is an elementary potential, then ∂fu = ηu, ∂̄fu is smooth

on C and jx(ηu) = [−∂̄fu].

Proof. The (1, 0)-form ∂fu is holomorphic on C −{x} since fu is harmonic.
Moreover ∂fu = z−2dz + ∂g on U − {x}. The form ∂g is holomorphic
on U − {x}, but also smooth on U . Hence it is holomorphic on U . This
shows that ∂fu = ηu + ω for some ω ∈ H0(KC). Set α := −∂̄fu. Then α
is smooth on C by the definition of fu. It is closed, since fu is harmonic
and of type (0, 1). On C − {x} we have ∂fu − α = dfu, so [∂fu] = [α] in
H1(C−{x}). Therefore jx(∂fu) = [α]. Since [α] ∈ H0,1(C), this shows that
jx(∂fu) ∈ H0,1(C). Therefore ω = 0 and ηu = ∂fu. �

Remark 3.4. Notice that one could prove the existence of fu using ηu and
the fact that C − {x} is Stein.

Lemma 3.5. If H0,1(C) is identified with H0(C,KC)
∗ using Serre duality,

then x 7→ Im jx ∩H
0,1(C) ∈ P(H0,1(C)) coincides with the canonical map.

Proof. Let (U, z) be a coordinate centred at x. Set u = ∂
∂z (x). If ω ∈

H0(C,KC ), let ω = ϕ(z)dz be its local expression on U . By Lemma 3.3
jx(ηu) = −[∂̄fu]. Therefore

∫

C
ω ∧ jx(ηu) = −

∫

C
ω ∧ ∂̄fu =

∫

C−{x}
d(fu ω) =

= lim
ε→0

∫

|z|=ε
ϕ(z)

(

−
1

z
+ g(z)

)

dz = −ϕ(0) = −ω(u).

(3.1)

�

3.6. Let S := C ×C, let ∆ denote the diagonal and let p, q : S → C be the
projections p(x, y) = x, q(x, y) = y. Then KS = p∗KC ⊗ q∗KC . Consider
the line bundle L := KS(2∆) on S and set

V := p∗(q
∗KC(2∆)) E := p∗L.

By the projection formula E = KC⊗V . Since q∗KC(2∆)|{x}×C = q∗KC(2x),

we have H0(p−1(x), q∗KC(2∆)) ∼= H0(C,KC(2x)). By Grauert semiconti-
nuity theorem V is a holomorphic vector bundle on C with fibre Vx ∼=
H0(C,KC (2x)) and the map x 7→ ηx is a section of E. We call this section
η.

Proposition 3.7. η is a holomorphic section of E.

Proof. Let W → C denote the trivial vector bundle with fibre H1(C,C).
We claim that the injection j : V →֒W defined in (2.2) is holomorphic. Fix
α ∈ H0(C,KC (2x)) and a smooth singular 1-cycle c on C. If x does not lie
in the support of c, the integral

∫

c α is well-defined. It does not change if α

is replaced by α + df with f ∈ C∞(C − {x}). Therefore
∫

c α = 〈[c], j(α)〉.
Fix x0 ∈ C and choose smooth 1-cycles c1, . . . , c2g, that do not touch x0 and
whose classes form a basis of H1(C,C). Let A be an open subset of C, such
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that V is trivial over A and A does not intersect the supports of the cycles
ci. Fix s ∈ H0(A,V ). To show that j(s) is a holomorphic section of W over
A, it is enough to prove that the functions

x 7−→ 〈[ci], jx(s(x))〉 =

∫

ci

s(x)

are holomorphic on A. Since V = p∗q
∗KC(2∆), s corresponds to a section

s ∈ H0(A×C, q∗KC(2∆)). So s(x, ·)|C−A is a holomorphic 1-form on C−A
depending holomorphically on the parameter x ∈ A and its integral over
the 1-cycle ci (which is contained in C − A) is a holomorphic function of
x. Therefore j(s) is holomorphic. Since s is arbitrary, this proves that j is
holomorphic, as claimed. Next fix a chart (U, z) on C. To show that η is
holomorphic on U it is enough to prove that η( ∂

∂z ) is holomorphic or - by

the above - that j(η( ∂
∂z )) is a holomorphic function U → H1(C,C). Fix a

basis {ω1, . . . , ωg} of H0(C,KC). The functionals
∫

C(·) ∧ ωj and
∫

C(·) ∧ ωj

form a basis of H1(C,C)∗. Since j(η( ∂
∂z )) ∈ H0,1(C) the latter g functionals

vanish on j(η( ∂
∂z )). Assume that ωj(z) = fj(z)dz on U . By (3.1)

∫

C
j
(

η(
∂

∂z
)
)

∧ ωj = fj(z).

This proves that j(η( ∂
∂z )) is holomorphic. �

3.8. Since E = p∗L there is an isomorphism H0(C,E) ∼= H0(S,L) that
associates to α ∈ H0(C,E) the section α̂ ∈ H0(S,L) such that

αx = α̂|{x}×C ∈ T ∗
xC ⊗H0(C,KC(2x)) = Ex.

It follows that αx(u)(v) = α̂
(

(u, 0), (0, v)
)

for x 6= y, u ∈ TxC and v ∈ TyC.

Thus there is a well-defined section η̂ ∈ H0(S,L) corresponding to η and
for u ∈ TxC and v ∈ TyC with x 6= y, we have ηx(u)(v) = η̂(u, v).

Lemma 3.9. The form η̂ is symmetric, i.e. η̂
(

(u, 0), (0, v)
)

= η̂
(

(v, 0), (0, u)
)

.

Proof. Fix points x 6= y and tangent vectors u ∈ TxC, y ∈ TyC. Using the

identity d
(

fu(∂̄fv − ∂fv) − fv(∂̄fu − ∂fu)
)

= 2
(

fu∂∂̄fv − fv∂∂̄fu
)

= 0 and

applying Stokes theorem on C − {|z| < ε} ∪ {|w| < ε} we get

0 =

∫

|z|=ε

(

fu(∂̄fv − ∂fv)− fv(∂̄fu − ∂fu)
)

+

+

∫

|w|=ε

(

fu(∂̄fv − ∂fv)− fv(∂̄fu − ∂fu)
)

(This is just Green formula.) Let us denote by Aε and Bε these two inte-
grals. Observe that fv∂fu = ∂(fufv)− fu∂fv and fu∂̄fv = ∂̄(fufv)− fv∂̄fu.
Therefore

Aε =

∫

|z|=ε

(

d(fufv)− 2fv∂̄fu − 2fu∂fv

)

= −2

∫

|z|=ε

(

fv∂̄fu + fu∂fv

)

.
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Since fv∂̄fu is a smooth form near x, we have limε→0

∫

|z|=ε fv∂̄fu = 0.

Choose a coordinate (U, z) centred at x such that u = ∂/∂z(x) and let g(z)
be as in 3.2. Near x we have ηy(v) = ∂fv = h(z)dz for some holomorphic
function h. So

lim
ε→0

Aε = −2 lim
ε→0

∫

|z|=ε
fu∂fv =

= −2 lim
ε→0

∫

|z|=ε

(

−
1

z
+ g(z)

)

h(z)dz = 4πih(0) = 4πiηy(v)(u).

By the corresponding computation, limε→0Bε =−4πiηx(u)(v), so ηy(v)(u) =
ηx(u)(v) as desired. �

3.10. Aut(C) acts diagonally on C × C and preserves ∆. Therefore the
action lifts to KS and also to L = KS(2∆). This yields a representation of
Aut(C) on H0(S,L). On the other hand, if σ ∈ Aut(C), then (σ−1)∗ is a
map from H0(C,KC (2x)) = Vx to H0(C,KC(2σ(x))) = Vσ(x). Tensoring it

with (dσ−1)∗ : T ∗
xC → T ∗

σ(x)C we get a map T ∗
xC ⊗ Vx → T ∗

σ(x)C ⊗ Vσ(x).

This yields an action of Aut(C) on the total space of E = KC ⊗ V which
covers the action of Aut(C) on C. This means that E is an equivariant
bundle. In this way we get a representation of Aut(C) on H0(C,E). The
map α 7→ α̂ considered in 3.8 is an isomorphism of Aut(C)–representations.

Lemma 3.11. η and η̂ are invariant with respect to the action of Aut(C).

Proof. By the above it is enough to show that η is invariant. For τ ∈ Aut(C)
we wish to prove that (dτ−1)∗ ⊗ (τ−1)∗(ηy) = ητ(y) for any y ∈ C. For

simplicity, set σ := τ−1, x := τ(y). So we wish to prove that σ∗(ηy(dσ(u))) =
ηx(u) for any u ∈ TxC. By continuity it is enough to prove this for x such
that σ(x) 6= x. Choose a coordinate patch (U, z) centred at x, such that
U ∩ σ(U) 6= ∅ and u = ∂

∂z |x. Then (σ(U), w := z ◦ σ−1) is a coordinate

system centred at σ(x) and ∂
∂w (σ(x)) = dσ(u). Assume that

ηx(u) =

(

1

z2
+ h(z)

)

dz

on U . Then

τ∗ηx(u) =

(

1

w2
+ h(w)

)

dw

on σ(U). Moreover jyτ
∗ = τ∗jx. So jyτ

∗(ηx(u)) = τ∗jx(ηx(u)). Since
jx(ηx(u)) ∈ H

0,1(C), also jyτ
∗(ηx(u)) ∈ H0,1(C). Hence τ∗ηx(u) = ηy(dσ(u))

as desired. �

3.12. If we identify H0(C,KC) ⊗H0(C,KC) with H0(S,KS), then I2 be-
comes a subspace of H0(S,KS(−∆)). Since elements of I2 are symmetric,
they are in fact in H0(S,KS(−2∆)). So if Q ∈ I2 the product section Q · η̂
lies in H0(S, 2KS) ∼= H0(C, 2KC )⊗H0(C, 2KC ).
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Theorem 3.13. With the above identifications, if C is non-hyperelliptic and

of genus g ≥ 4, then ρ : I2 → S2H0(C, 2KC ) is the restriction to I2 of the

multiplication map

H0(S,KS(−2∆)) −→ H0(S, 2KS) Q 7→ Q · η̂.

Proof. The identification H0(C, 2KC )⊗H0(C, 2KC ) ∼= H0(S, 2KS) is com-
patible with Lemma 2.3, i.e. for α ∈ H0(S, 2KS), u ∈ TxC and v ∈ TyC we
have 〈α, ξu ⊗ ξv〉 = α

(

(u, 0), (0, v)
)

. If x 6= y, by Theorem 2.6

ρ(Q)(ξu ⊙ ξv) = Q(u, v)ηx(u)(v) =

= (Q · η̂)
(

(u, 0), (0, v)
)

= (Q · η̂) (ξu ⊙ ξv).

(In the last identity we use the fact that both Q and η̂ are symmetric). So
ρ(Q)−Q · η̂ vanishes on tensors of the form ξu ⊙ ξv with x 6= y. Clearly we
can choose a basis of S2H1(C, TC) formed by such elements. �

3.14. Since the second fundamental form is symmetric, using this theorem
we get another proof of Lemma 3.9.

4. Totally geodesic submanifolds and gonality

4.1. In this section we will give an upper bound for the dimension of a germ
of a totally geodesic submanifold contained in the Jacobian locus.

Theorem 4.2. Assume that C is a k-gonal curve of genus g, with g ≥ 4
and k ≥ 3. Then there exists a quadric Q ∈ I2(KC) such that rank ρ(Q) >
2g − 2k.

Proof. Here we follow the simplified notation mentioned in 2.7. So we un-
derstand that a local coordinate has been fixed at the relevant points and
we write ξP for a Schiffer variation at P . Let F be a line bundle on C such
that |F | is a g1k and choose a basis {x, y} of H0(F ). Set M = KC − F and
denote by B the base locus of |M |. By Clifford theorem deg(B) < k − 2.
Assume that 〈t1, t2〉 is a pencil in H0(M), with base locus B. We can write
ti = t′is for a section s ∈ H0(C,OC (B)) with div(s) = B. Then 〈t′1, t

′
2〉 is a

base point free pencil in |M −B|. Let ψ : C → P
1 be the morphism induced

by this pencil.
Now consider the rank 4 quadric Q := xt1 ⊙ yt2 − xt2 ⊙ yt1. Clearly

Q ∈ I2(KC). Set d := deg(M − B) = 2g − 2 − k − deg(B). We need the
following fact: if {P1, ..., Pd} is a fibre of the morphism ψ over a regular
value, then the Schiffer variations ξP1 , ..., ξPd

are linearly independent in
H1(C, TC). In fact, denote by W := 〈ξP1 , ..., ξPd

〉. We want to show that
the annihilator Ann(W ) of W has dimension 3g − 3 − d. By lemma 2.3,
Ann(W ) = {α ∈ H0(C, 2KC ) | α(Pi) = 0, i = 1, ..., d}, hence by Riemann-
Roch dimAnn(W ) = h0(2KC −P1−· · ·−Pd) = h0(2KC −M+B) = g−1+
k+deg(B) = 3g−3−d. The claim is proven. Next denote by ϕ the morphism
induced by the pencil |F | and consider the set E := ψ(Crit(ϕ)∪Crit(ψ)∪B)
where Crit(ϕ) (resp. Crit(ψ)) denote the set of critical points of ϕ (resp. ψ).
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Let z ∈ P
1 − E and let {P1, . . . , Pd} be the fibre of ψ over z. By changing

coordinates on P
1 we can assume z = [0, 1], i.e. t′1(Pi) = 0 for i = 1, . . . d.

Then clearly t1(Pi) = 0, so Q(Pi, Pj) = 0 for all i, j. Applying Theorem
2.6, one immediately obtains that the restriction of ρ(Q) to the subspaceW
is represented in the basis {ξP1 , ..., ξPd

} by a diagonal matrix with entries
πi · µ2(Q)(Pi) on the diagonal. For a rank 4 quadric the second Gaussian
map can be computed as follows: µ2(Q) = µ1,F (x ∧ y)µ1,M (t1 ∧ t2) see [4,
Lemma 2.2]. Now µ1,F (x ∧ y)(Pi) 6= 0, because Pi 6∈ Crit(ϕ) by the choice
of z, see (2.1). Moreover Pi 6∈ B. On C −B the morphism ψ coincides with
the map associated to 〈t1, t2〉. Since Pi 6∈ Crit(ψ), it is not a critical point
for the latter map. Therefore also µ1,M (t1 ∧ t2)(Pi) 6= 0 see (2.1). Thus
µ2(Q)(Pi) = µ1,F (x∧y)(Pi)µ1,M (t1∧ t2)(Pi) 6= 0 for every i = 1, . . . , d. This
shows that in the basis {ξP1 , ..., ξPd

} the quadric ρ(Q)|W is represented by
a diagonal matrix with non-zero diagonal entries. So ρ(Q) has rank at least
d = 2g − 2− k − degB > 2g − 2k. �

Theorem 4.3. Assume that C is a k-gonal curve of genus g with g ≥ 4
and k ≥ 3. Let Y be a germ of a totally geodesic submanifold of Ag which

is contained in the jacobian locus and passes through [C]. Then dimY ≤
2g + k − 4.

Proof. By Theorem 4.2 we know that there exists a quadric Q ∈ I2 such that
the rank of ρ(Q) is at least 2g − 2k + 1. By assumption for any v ∈ T[C]Y
we must have that ρ(Q)(v ⊙ v) = 0, so v is isotropic for ρ(Q), hence

dimT[C]Y ≤ 3g − 3−
(2g − 2k + 1)

2
= 2g + k −

7

2
.

�

Remark 4.4. In Theorem 4.2 if |M | is base point free – this happens in
particular if C is generic in the locus of k-gonal curves – the above proof
shows that rank ρ(Q) ≥ 2g − 2 − k. So if Y is a germ of a totally geodesic
submanifold of Ag contained in the jacobian locus and passing through a
generic k-gonal curve, then dimY ≤ 2g − 2 + k/2.

Theorem 4.5. If g ≥ 4 and Y is a germ of a totally geodesic submanifold

of Ag contained in the jacobian locus, then dimY ≤ 5
2 (g − 1).

Proof. This immediately follows from Theorem 4.3, since the gonality of a
genus g curve is at most [(g + 3)/2]. �

Corollary 4.6. For any g ≥ 4 and k ≥ 2 the k-gonal locus is not totally

geodesic in Ag.

Proof. For k = 2 this is Proposition 5.1 in [5]. If k ≥ 3 the dimension of
the k-gonal locus is 2g + 2k − 5 > 2g + k − 4. Hence the statement follows
immediately from Theorem 4.3. �

Remark 4.7. As it is evident from the proof, gonality is used to construct
a quadric Q ∈ I2(KC) of rank 4 such that ρ(Q) has large rank. It seems
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unlikely that gonality plays any role in this problem. In fact we expect
the existence of Q ∈ I2(KC) with image ρ(Q) a nondegenerate quadric on
H1(C, TC). This would give the upper bound 3

2 (g − 1) for the dimension
of a germ of a totally geodesic submanifold. On the other hand, the map
ρ is injective. This can be deduced from [5, Cor. 3.4] or from Theorem
3.13, since the form η̂ is non-zero. Therefore ρ(I2(KC)) is a linear system

of quadrics of dimension (g−1)(g−4)
2 on P(H1(C, TC )) = P

3g−4. This already
gives an upper bound for the dimension of a submanifold Y as in Theorem
4.5. Indeed for any point [C] ∈ Y , the tangent space T[C]Y ⊂ H1(C, TC)
is contained in the base locus of ρ(I2(KC)). This means that ρ(I2(KC)) is
contained in the space of quadrics q ∈ S2H0(C, 2KC ) that vanish on T[C]Y .
This yields the bound

dimY ≤
−1 +

√

32g2 − 40g + 1

2
.

Nevertheless for any g ≥ 2 this bound is weaker than the one provided in
Theorem 4.5. At any case the study of the base locus of the linear system
ρ(I2(KC)) should clearly improve the understanding of totally geodesic sub-
manifolds. If one could prove that the base locus is empty, one would rule out
the existence of totally geodesic submanifolds passing through [C]. However
to proceed in this direction it is probably necessary to better understand
the form η̂.

Remark 4.8. Observe that for g ≥ 5, the non existence of germs of totally
geodesic hypersurfaces follows directly from Theorem 2.6 and [4, Thm. 6.1].
In fact if Y is a hypersurface in Mg, it passes through a non-trigonal curve
[C]. Since PT[C]Y intersects the bicanonical curve in PH1(TC), T[C]Y con-
tains a Schiffer variation ξx, for some x ∈ C. By [4, Thm. 6.1], there exists
a quadric Q ∈ I2(KC) such that µ2(Q)(x) 6= 0, so ρ(Q)(ξx ⊙ ξx) 6= 0 by
Theorem 2.6.

5. Families of cyclic covers of the projective line

5.1. Let C be a curve of genus g ≥ 4 and let G be a subgroup of the group
of automorphisms of C. This yields an inclusion of G in the mapping class
group Γg [11]. So G acts on the Teichmüller space Tg and we denote by TG

g

the set of fixed points of G on Tg, which is a nonempty by the solution of
Nielsen realization problem [14, 27, 3], and is a complex submanifold of Tg.

The tangent space to TG
g at a point [C] is given by H1(C, TC)

G. Moreover

TG
g parametrizes marked curves C endowed with a holomorphic action of

G of the given topological type and there is a universal family C → TG
g

containing all such curves. If t ∈ TG
g we denote by Ct the corresponding

curve.

5.2. Let us now consider the period map at the level of Teichmüller spaces
Tg → Hg. This is an immersion outside the hyperelliptic locus, and we will
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consider its restriction to TG
g . Denote by Z(G) its image in Ag. Given a

point t ∈ TG
g such that Ct is non-hyperelliptic, the cotangent spaces fit in

the exact sequence

0 → N∗ → S2H0(KCt)
π
→ H0(2KCt)

G → 0,

where N∗ is the conormal space to Z(G) ⊂ Ag at the point J(Ct). Since π
is G-invariant, N∗ is a G-submodule. Let

ρ̃ : N∗ → H0(2KCt)
G ⊗H0(2KCt)

G

denote the second fundamental form of Z(G) at point J(Ct).

Lemma 5.3. The second fundamental form ρ̃ is G-equivariant.

Proof. Recall that by definition, given a ∈ N∗, we have ρ̃(a) = π(∇(a)),

where ∇ is the Gauss-Manin connection on S2f∗ωC/TG
g

of the family C
f
→

TG
g . Since π is G-invariant, it suffices to prove that ∇ is G-invariant, i.e.

g−1∇g = ∇ for every g ∈ G. Observe that the flat connection ∇GM on
R1f∗C is G-invariant, since the G–action maps flat sections to flat sections.
Let π1,0 : H1(Ct,C) → H1,0(Ct) be the projection. Then π1,0 ◦ ∇GM is the
connection on the Hodge bundle f∗ωC/TG

g
. Since the action of G on C is

holomorphic, the projection π1,0 is G-equivariant, hence π1,0 ◦∇GM is also a
G-invariant connection. Finally ∇ is the connection induced by π1,0 ◦ ∇GM

on S2f∗ωC/TG
g
. The result follows. �

Proposition 5.4. If there are no nonzero quadrics in I2(KCt), which are

invariant under the action of the group G, then Z(G) is totally geodesic.

Proof. Consider the cotangent sequence of the period map j : Tg → Hg at
the point [Ct] and its restriction to TG

g :

0 I2(KCt) S2H0(KCt) H0(2KCt) 0

0 N∗ S2H0(KCt) H0(2KCt)
G 0.
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(5.1)

(The notation is as in 5.2.) Since the map m is G-equivariant, any G-
invariant element in N∗ lies in I2(KCt). Hence by the assumption there
are no nontrivial invariant elements in N∗, i.e. the trivial representation
does not appear in the decomposition of N∗. On the other hand the rep-
resentation H0(2KCt)

G is trivial. By Lemma 5.3 ρ̃ is a morphism of G-
representations. Hence Schur lemma implies that ρ̃ is the trivial map. �

5.5. Now we will consider the case in which G = Z/mZ, m ≥ 3 and
C/G ∼= P

1. These families have been studied by various authors, e.g.
[7, 21, 25], since they provide the only known examples of totally geodesic
submanifolds contained in the Jacobian locus. These examples are in fact
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Shimura varieties. A complete list of the Shimura varieties that can be ob-
tained in this way has been given in [21], which we follow for the notation
in the rest of the paper.

We identify G also with the group of m-th roots of unity. Fix an integer
N ≥ 4, together with an N -tuple a = (a1, ..., aN ) of positive integers, such

that gcd(m,a1, ..., aN ) = 1, ai 6≡ 0 mod m and
∑N

i=1 ai ≡ 0 mod m. Given
distinct points t1, ..., tN ∈ P

1 there is a well-defined curve Ct which is a
cyclic cover of P

1 with covering group Z/mZ, branch points ti and local
monodromy ai at ti. It is the normalization of the affine curve

(5.2) ym =
N
∏

i=1

(x− ti)
ai .

Varying the branch points t = (t1, . . . , tN ) one obtains a (N−3)-dimensional
family of curves C → B. There is an action of G on C given by the rule
ζ · (x, y, t) := (x, ζ · y, t), ζ ∈ G. Thus triples (m,N, a) parametrize these
families and two triples (m,N, a) and (m′, N ′, a′) yield equivalent families
if and only if m = m′, N = N ′ and the classes of a and a′ in (Z/mZ)N are
in the same orbit under the action of (Z/mZ)∗ × ΣN , where (Z/mZ)∗ acts
diagonally by multiplication and the symmetric group ΣN acts by permu-
tation of the indices. Notice that to fix the class of the triple (m,N, a) is
equivalent to fixing the topological type of the G-action. Thus B and TG

g

have the same image in Mg and we will consider Z(m,N, a) := Z(G) ⊂ Ag

the (N − 3)-dimensional subvariety given by the Jacobians of the curves Ct,
t ∈ B. By the Hurwitz formula

g = 1 +
(N − 2)m−

∑N
i=1 ri

2

with ri := gcd(m,ai). A basis of H0(Ct,KCt) is given as follows. For
i ∈ {1, ..., N} and n ∈ Z set

l(i, n) :=
[−nai
m

]

dn = −1 +

N
∑

i=1

〈−nai
m

〉

(Here [a] and 〈a〉 denote the integral and fractional parts of a ∈ R.) Since
G acts on Ct, there is a decomposition H0(Ct,KCt) = ⊕m−1

n=0 Vn, where Vn
is the subspace of 1-forms ω such that ζ · ω = ζnω. Then V0 = {0}, while
for n = 1, . . . ,m − 1 a basis of Vn is provided by the forms that have the
following expression in the model (5.2):

(5.3) ωn,ν := yn · (x− t1)
ν ·

N
∏

i=1

(x− ti)
l(i,n) · dx 0 ≤ ν ≤ dn − 1.

Remark 5.6. In [21], Moonen proved that there is a finite list of triples
(m,N, a) such that the corresponding subvariety Z = Z(m,N, a) ⊂ Ag is a
Shimura variety. By [20] a Shimura variety is a totally geodesic algebraic
submanifold of Ag that contains a complex multiplication point. Therefore
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the families in Moonen’s list are totally geodesic. Using Proposition 5.4
we can immediately verify that all these families are totally geodesic. In
fact in all those cases there are no nontrivial quadrics in I2(KCt) which are
invariant under the action of the cyclic group.

Proposition 5.7. Consider the family C → B associated to the triple

(m,N, a) as above and the corresponding subvariety Z = Z(m,N, a) ⊂ Ag

given by the Jacobians of the curves Ct. Assume that not all the curves

Ct are hyperelliptic. If there exists an integer n ∈ {1, ...,m − 1} such that

dn ≥ 2, dm−n ≥ 2 and n 6= m− n, then Z is not totally geodesic.

Proof. Fix an arbitrary non-hyperelliptic curve C = Ct belonging to the
family. We use the representation (5.2). Since dn ≥ 2 and dm−n ≥ 2 and
n 6= m − n, there are four distinct forms ωn,0, ωn,1, ωm−n,0, ωm−n,1 given
in (5.3). We form the quadric

Q := ωn,0 ⊙ ωm−n,1 − ωn,1 ⊙ ωm−n,0.

One immediately sees from the definition that Q ∈ I2(KC) and that Q is
G-invariant. Let D be the divisor of poles of the meromorphic function
x ∈ M(C). Let σ0, σ1 ∈ H0(C,OC(D)) be the sections corresponding to
the meromorphic functions 1 and x. Assume for simplicity that t1 = 0, so we
have ωn,1 = x · ωn,0 and ωm−n,1 = x · ωm−n,0. Hence the forms ωn,0, ωm−n,0

can be seen as elements in H0(C,KC(−D)). Set τ0 := ωn,0, τ1 := ωm−n,0.
The quadric Q can be written as follows:

(5.4) Q = σ0τ0 ⊙ σ1τ1 − σ0τ1 ⊙ σ1τ0.

Denote by ϕ : C → P
1 our covering: it corresponds to the pencil 〈1, x〉 =

〈σ0, σ1〉. Denote by ψ the map to P
1 induced by the other pencil 〈τ0, τ1〉.

Take a point p ∈ C that does not belong to the set Crit(ϕ)∪G ·Crit(ψ)∪B,
where B is the base locus of ψ. Fix a nonzero vector u ∈ TpC. The vector
v :=

∑

g∈G ξdg(u) ∈ H1(C, TC ) is clearly G-invariant. So it is a tangent

vector to TG
g at the point corresponding to C. Hence by diagram (5.1)

we have ρ(Q)(v ⊙ v) = ρ̃(Q)(v ⊙ v). By Lemma (3.11) the map ρ is also
G-equivariant. So, using Theorem 2.6 we get

ρ̃(Q)(v ⊙ v) = ρ(Q)(v ⊙ v) =
∑

g1,g2∈G

ρ(Q)(ξdg1(u) ⊙ ξdg2(u)) =

= |G| ·

(

∑

g 6=1

ρ(Q)(ξu ⊙ ξdg(u))− 2πiµ2(Q)(p)

)

= −2πim ·

(

2
∑

g 6=1

Q(u, dg(u)) · ηu(dg(u)) + µ2(Q)(p)

)

.

By (5.4) Q is the quadric associated to the pencils 〈σ0, σ1〉 and 〈τ0, τ1〉, cor-
responding to the maps ϕ and ψ respectively. Since the fibre of ϕ containing
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p is the orbit G · p, Q(u, g∗u) = 0, forall g ∈ G− {1}. So finally we get

ρ̃(Q)(v ⊙ v) = −2πim · µ2(Q)(p),

and µ2(Q)(p) 6= 0 by our choice of p. Hence Z is not totally geodesic. �

Corollary 5.8. For any m, there is only a finite number of families which

can be totally geodesic.

Proof. By Proposition 5.7, if there exists an integer n ∈ {1, ...,m − 1} such
that dn, dm−n ≥ 2, n 6= n −m, then the family is not totally geodesic. So
we can assume that for all n ∈ {1, ...,m− 1} either dn ≤ 1, or dm−n ≤ 1. In
particular either d1 ≤ 1, or dm−1 ≤ 1. Denote by Ni the cardinality of the

set {j | aj = i}. Then
∑m−1

i=1 Ni = N and the relation
∑N

i=1 ai ≡ 0 mod m

becomes
∑m−1

i=1 iNi ≡ 0 mod m. But

dl = −1 +

N
∑

i=1

〈−lai
m

〉

= −1 +

m−1
∑

i=1

Ni

〈−li

m

〉

, for l = 1, . . . ,m− 1,

so d1 = −1 +

m−1
∑

i=1

m− i

m
Ni, dm−1 = −1 +

m−1
∑

i=1

i

m
Ni.

Hence for l ∈ {1,m− 1} we have dl ≥ −1 +
∑m−1

i=1
Ni

m = −1 + N
m . So dl ≤ 1

implies N ≤ 2m. Hence only a finite number of families can be totally
geodesic. �

Now we give some examples of computations for low degree (m = 3 and
m = 5), showing that by the previous results most of the families are not
totally geodesic.

Corollary 5.9. If m = 3 and g ≥ 5, then the varieties Z(3, N, a) are not

totally geodesic. If g = 4 there is only one totally geodesic family given by

the triple (3, 6, a) where a = (1, 1, 1, 1, 1, 1).

Proof. If d1, d2 ≥ 2, we know by Proposition 5.7 that the family is not totally
geodesic. So we can assume that there exists n ∈ {1, 2} such that dn = 1.

In this case the space S2H0(KCt)
(0) given by the invariant elements equals

〈ωn,0⊙V3−n〉. So there are no nonzero invariant elements in I2(KCt) and by
Proposition 5.4 we conclude that the family is totally geodesic. So we have
to show that g = 4, N = 6 and a = (1, 1, 1, 1, 1, 1). Denote as above by Ni

the cardinality of the set {j | aj = i}. Then N1+N2 = N and N1+2N2 ≡ 0
mod 3. So

d1 = −1 +

N
∑

i=1

〈−ai
3

〉

= −1 +N1

〈−1

3

〉

+N2

〈−2

3

〉

= −1 +
2

3
N1 +

1

3
N2,

d2 = −1 +
N
∑

i=1

〈−2ai
3

〉

= −1 +N1

〈−2

3

〉

+N2

〈−4

3

〉

= −1 +
1

3
N1 +

2

3
N2.
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By Hurwitz formula g = N−2. Since we are assume g ≥ 4 we get N1+N2 =
N ≥ 6. If d1 = 1,

6 ≤ N1 +N2 ≤ 2N1 +N2 = 6,

so N = 6, g = 4, N1 = 0, N2 = 6, hence a = (2, 2, 2, 2, 2, 2) which is
equivalent to (1, 1, 1, 1, 1, 1). If d2 = 1 we have

6 ≤ N1 +N2 ≤ N1 + 2N2 = 6,

so N = 6, g = 4, N2 = 0, N1 = 6, a = (1, 1, 1, 1, 1, 1). �

Remark 5.10. If m = 5, the following families are totally geodesic (see the
list in [21]):

(1) g = 4, N = 4, a = (1, 3, 3, 3),
(2) g = 6, N = 5, a = (2, 2, 2, 2, 2).

(1) is the family constructed by de Jong-Noot [7]. Applying the criterion
given in Proposition 5.7 we are able to prove that all other families are not
totally geodesic except possibly for the following 4 cases

(3) g = 4, N = 4, a = (1, 1, 4, 4),
(4) g = 4, N = 4, a = (1, 2, 3, 4),
(5) g = 6, N = 5, a = (1, 1, 1, 3, 4),
(6) g = 6, N = 5, a = (1, 1, 2, 2, 4),
(7) g = 8, N = 6, a = (1, 1, 2, 2, 2, 2).

(3) is contained in the hyperelliptic locus, see [21, (5.7)]. (4) has been studied
in detail in [28]. Since one can check that it contains a CM point, it is not
totally geodesic by Moonen’s classification.

It would be interesting to get a complete list of the families of cyclic
coverings which are totally geodesic and to compare it with the list in [21].
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[19] M. Möller, E. Viehweg, and K. Zuo. Special families of curves, of abelian varieties,

and of certain minimal manifolds over curves. In Global aspects of complex geometry,
pages 417–450. Springer, Berlin, 2006.

[20] B. Moonen. Linearity properties of Shimura varieties. I. J. Algebraic Geom., 7(3):539–
567, 1998.

[21] B. Moonen. Special subvarieties arising from families of cyclic covers of the projective
line. Doc. Math., 15:793–819, 2010.

[22] Moonen, B., Oort, F., The Torelli locus and special subvarieties. in Handbook of
Moduli: Volume II edited by G. Farkas, I. Morrison, International Press, 2013, pp.
549–94.

[23] F. Oort and J. Steenbrink. The local Torelli problem for algebraic curves. In Journées
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