935 research outputs found

    Engineering Cell–ECM–Material Interactions for Musculoskeletal Regeneration

    Get PDF
    The extracellular microenvironment regulates many of the mechanical and biochemical cues that direct musculoskeletal development and are involved in musculoskeletal disease. The extracellular matrix (ECM) is a main component of this microenvironment. Tissue engineered approaches towards regenerating muscle, cartilage, tendon, and bone target the ECM because it supplies critical signals for regenerating musculoskeletal tissues. Engineered ECM–material scaffolds that mimic key mechanical and biochemical components of the ECM are of particular interest in musculoskeletal tissue engineering. Such materials are biocompatible, can be fabricated to have desirable mechanical and biochemical properties, and can be further chemically or genetically modified to support cell differentiation or halt degenerative disease progression. In this review, we survey how engineered approaches using natural and ECM-derived materials and scaffold systems can harness the unique characteristics of the ECM to support musculoskeletal tissue regeneration, with a focus on skeletal muscle, cartilage, tendon, and bone. We summarize the strengths of current approaches and look towards a future of materials and culture systems with engineered and highly tailored cell–ECM–material interactions to drive musculoskeletal tissue restoration. The works highlighted in this review strongly support the continued exploration of ECM and other engineered materials as tools to control cell fate and make large-scale musculoskeletal regeneration a reality

    Replica symmetry breaking in an adiabatic spin-glass model of adaptive evolution

    Full text link
    We study evolutionary canalization using a spin-glass model with replica theory, where spins and their interactions are dynamic variables whose configurations correspond to phenotypes and genotypes, respectively. The spins are updated under temperature T_S, and the genotypes evolve under temperature T_J, according to the evolutionary fitness. It is found that adaptation occurs at T_S < T_S^{RS}, and a replica symmetric phase emerges at T_S^{RSB} < T_S < T_S^{RS}. The replica symmetric phase implies canalization, and replica symmetry breaking at lower temperatures indicates loss of robustness.Comment: 5pages, 2 figure

    Teacher interventions in students’ collaborative work in a technology-rich educational makerspace

    Get PDF
    This study reports on an investigation of teacher interventions in students' collaborative work in an educational makerspace. We draw on a qualitative analysis of video data on teacher-student interaction derived from 94 students (aged 9-12) and their teachers in a Finnish school. The results show that the teacher interventions were both student- and teacher-initiated. Three leading teacher intervention strategies were identified, namely authoritative, orchestrating and unleashing which emerged in teacher-student interactions dealing with conceptual, procedural, technological, behavioural and motivational issues. The study demonstrates the demands makerspaces pose for teacher-student interaction, and how moving from authoritative to collaborative interaction requires collective efforts and cultural change.Peer reviewe

    The challenges of intersectionality: Researching difference in physical education

    Get PDF
    Researching the intersection of class, race, gender, sexuality and disability raises many issues for educational research. Indeed, Maynard (2002, 33) has recently argued that ‘difference is one of the most significant, yet unresolved, issues for feminist and social thinking at the beginning of the twentieth century’. This paper reviews some of the key imperatives of working with ‘intersectional theory’ and explores the extent to these debates are informing research around difference in education and Physical Education (PE). The first part of the paper highlights some key issues in theorising and researching intersectionality before moving on to consider how difference has been addressed within PE. The paper then considers three ongoing challenges of intersectionality – bodies and embodiment, politics and practice and empirical research. The paper argues for a continued focus on the specific context of PE within education for its contribution to these questions

    Tales from the playing field: black and minority ethnic students' experiences of physical education teacher education

    Get PDF
    This article presents findings from recent research exploring black and minority ethnic (BME) students’ experiences of Physical Education teacher education (PETE) in England (Flintoff, 2008). Despite policy initiatives to increase the ethnic diversity of teacher education cohorts, BME students are under-represented in PETE, making up just 2.94% of the 2007/8 national cohort, the year in which this research was conducted. Drawing on in-depth interviews and questionnaires with 25 BME students in PETE, the study sought to contribute to our limited knowledge and understanding of racial and ethnic difference in PE, and to show how ‘race,’ ethnicity and gender are interwoven in individuals’ embodied, everyday experiences of learning how to teach. In the article, two narratives in the form of fictional stories are used to present the findings. I suggest that narratives can be useful for engaging with the experiences of those previously silenced or ignored within Physical Education (PE); they are also designed to provoke an emotional as well as an intellectual response in the reader. Given that teacher education is a place where we should be engaging students, emotionally and politically, to think deeply about teaching, education and social justice and their place within these, I suggest that such stories of difference might have a useful place within a critical PETE pedagogy

    Intensity-Based Registration of Freehand 3D Ultrasound and CT-scan Images of the Kidney

    Full text link
    This paper presents a method to register a pre-operative Computed-Tomography (CT) volume to a sparse set of intra-operative Ultra-Sound (US) slices. In the context of percutaneous renal puncture, the aim is to transfer planning information to an intra-operative coordinate system. The spatial position of the US slices is measured by optically localizing a calibrated probe. Assuming the reproducibility of kidney motion during breathing, and no deformation of the organ, the method consists in optimizing a rigid 6 Degree Of Freedom (DOF) transform by evaluating at each step the similarity between the set of US images and the CT volume. The correlation between CT and US images being naturally rather poor, the images have been preprocessed in order to increase their similarity. Among the similarity measures formerly studied in the context of medical image registration, Correlation Ratio (CR) turned out to be one of the most accurate and appropriate, particularly with the chosen non-derivative minimization scheme, namely Powell-Brent's. The resulting matching transforms are compared to a standard rigid surface registration involving segmentation, regarding both accuracy and repeatability. The obtained results are presented and discussed

    Extent, impact, and mitigation of batch effects in tumor biomarker studies using tissue microarrays

    Get PDF
    Tissue microarrays (TMAs) have been used in thousands of cancer biomarker studies. To what extent batch effects, measurement error in biomarker levels between slides, affects TMA-based studies has not been assessed systematically. We evaluated 20 protein biomarkers on 14 TMAs with prospectively collected tumor tissue from 1,448 primary prostate cancers. In half of the biomarkers, more than 10% of biomarker variance was attributable to between-TMA differences (range, 1–48%). We implemented different methods to mitigate batch effects (R package batchtma), tested in plasmode simulation. Biomarker levels were more similar between mitigation approaches compared to uncorrected values. For some biomarkers, associations with clinical features changed substantially after addressing batch effects. Batch effects and resulting bias are not an error of an individual study but an inherent feature of TMA-based protein biomarker studies. They always need to be considered during study design and addressed analytically in studies using more than one TMA

    Basal ganglia and cerebral cortical distribution of dopamine D1- and D2-receptors in neonatal and adult cat brain

    Full text link
    Quantitative receptor autoradiography was performed on neonatal and adult cat brains. Serial sections through the basal ganglia were assayed for D1- and D2-dopamine receptors and acetylcholinesterase (AChE) staining. The neonatal basal ganglia revealed patches of increased D1-receptor density that frequently overlapped with patches of increased AChE staining, while the D2-receptor distribution was more homogeneous. The adult basal ganglia revealed a mild amount of heterogeneity for both the D1- and D2-receptors, varying from 10 to 25%, with little correspondence to the marked heterogeneity seen with AChE staining. A distinct laminar distribution of the D1-receptor, without significant D2 binding, was seen in the cerebral cortex.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26835/1/0000395.pd

    New Singular and Nonsingular Colliding Wave Solutions in Einstein - Maxwell - Scalar Theory

    Full text link
    A technique is given to generate coupled scalar field solutions in colliding Einstein - Maxwell (EM) waves. By employing the Bell - Szekeres solution as seed and depending on the chosen scalar field it is possible to construct nonsingular solutions. If the original EM solution is already singular addition of scalar fields does not make the physics any better. In particular, scalar field solution that is transformable to spherical symmetry is plagued with singularities.Comment: 15 pages, To be published in GR

    The impact of deep-sea fisheries and implementation of the UNGA Resolutions 61/105 and 64/72. Report of an international scientific workshop

    Get PDF
    The scientific workshop to review fisheries management, held in Lisbon in May 2011, brought together 22 scientists and fisheries experts from around the world to consider the United Nations General Assembly (UNGA) resolutions on high seas bottom fisheries: what progress has been made and what the outstanding issues are. This report summarises the workshop conclusions, identifying examples of good practice and making recommendations in areas where it was agreed that the current management measures fall short of their target
    corecore