11,716 research outputs found
Resolving the large scale spectral variability of the luminous Seyfert 1 galaxy 1H 0419-577: Evidence for a new emission component and absorption by cold dense matter
An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in
September 2002, when the source was in an extreme low-flux state, found a very
hard X-ray spectrum at 1-10 keV with a strong soft excess below ~1 keV.
Comparison with an earlier XMM-Newton observation when 1H 0419-577 was `X-ray
bright' indicated the dominant spectral variability was due to a steep power
law or cool Comptonised thermal emission. Four further XMM-Newton observations,
with 1H 0419-577 in intermediate flux states, now support that conclusion,
while we also find the variable emission component in intermediate state
difference spectra to be strongly modified by absorption in low ionisation
matter. The variable `soft excess' then appears to be an artefact of absorption
of the underlying continuum while the `core' soft emission can be attributed to
recombination in an extended region of more highly ionised gas. We note the
wider implications of finding substantial cold dense matter overlying (or
embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.Comment: 34 pages, 15 figures, submitted to Ap
An XMM-Newton observation of the Narrow Line Seyfert 1 Galaxy, Markarian 896
XMM-Newton observations of the NLS1 Markarian 896 are presented. Over the
2-10 keV band, an iron emission line, close to 6.4 keV, is seen. The line is
just resolved and has an equivalent width of ~170 eV. The broad-band spectrum
is well modelled by a power law slope of gamma ~ 2.03, together with two
blackbody components to fit the soft X-ray excess. Using a more physical
two-temperature Comptonisation model, a good fit is obtained for an input
photon distribution of kT ~ 60eV and Comptonising electron temperatures of ~0.3
and 200 keV. The soft excess cannot be explained purely through the
reprocessing of a hard X-ray continuum by an ionised disc reflector.Comment: 6 pages, 4 figures, accepted by MNRA
Fe K emission and absorption features in XMM-Newton spectra of Mkn 766 - evidence for reprocessing in flare ejecta
We report on the analysis of a long XMM-Newton EPIC observation in 2001 May
of the Narrow Line Seyfert 1 galaxy Mkn 766. The 3-11 keV spectrum exhibits a
moderately steep power law continuum, with a broad emission line at ~6.7 keV,
probably blended with a narrow line at ~6.4 keV, and a broad absorption trough
above ~8.7 keV. We identify both broad spectral features with reprocessing in
He-like Fe. An earlier XMM-Newton observation of Mkn 766 in 2000 May, when the
source was a factor ~2 fainter, shows a similar broad emission line, but with a
slightly flatter power law and absorption at a lower energy. In neither
observation do we find a requirement for the previously reported broad 'red
wing' to the line and hence of reflection from the innermost accretion disc.
More detailed examination of the longer XMM-Newton observation reveals evidence
for rapid spectral variability in the Fe K band, apparently linked with the
occurrence of X-ray 'flares'. A reduction in the emission line strength and
increased high energy absorption during the X-ray flaring suggests that these
transient effects are due to highly ionised ejecta associated with the flares.
Simple scaling from the flare avalanche model proposed for the luminous QSO PDS
456 (Reeves etal. 2002) confirms the feasibility of coherent flaring being the
cause of the strong peaks seen in the X-ray light curve of \mkn.Comment: 9 pages, 11 figures, submitted to MNRA
Time-reversal and super-resolving phase measurements
We demonstrate phase super-resolution in the absence of entangled states. The
key insight is to use the inherent time-reversal symmetry of quantum mechanics:
our theory shows that it is possible to \emph{measure}, as opposed to prepare,
entangled states. Our approach is robust, requiring only photons that exhibit
classical interference: we experimentally demonstrate high-visibility phase
super-resolution with three, four, and six photons using a standard laser and
photon counters. Our six-photon experiment demonstrates the best phase
super-resolution yet reported with high visibility and resolution.Comment: 4 pages, 3 figure
Nursing Care of Older Patients in Hospital: Implications for Clinical Leadership
Objective This study investigated how nurses managed the care of acutely ill older patients in acute hospital settings. Design Constructivist inquiry has been used that included multiple methods of data collection: interviews, observations and documentation of care. Setting Participants were recruited from five acute medical and surgical units across two public hospitals. Participants Twenty seven registered nurses caring for patients who were aged 65 years and older
Superconductivity in Heavy Alkaline-Earths Intercalated Graphites
We report the discovery of superconductivity below 1.65(6) K in
Sr-intercalated graphite SrC6, by susceptibility and specific heat (Cp)
measurements. In comparison with CaC6, we found that the anisotropy of the
upper critical fields for SrC6 is much reduced. The Cp anomaly at Tc is smaller
than the BCS prediction indicating an anisotropic superconducting gap for SrC6
similar to CaC6. The significantly lower Tc of SrC6 as compared to CaC6 can be
understood in terms of "negative" pressure effects, which decreases the
electron-phonon coupling for both in-plane intercalant and the out-of-plane C
phonon modes. We observed no superconductivity for BaC6 down to 0.3 K.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Manipulating biphotonic qutrits
Quantum information carriers with higher dimension than the canonical qubit
offer significant advantages. However, manipulating such systems is extremely
difficult. We show how measurement induced non-linearities can be employed to
dramatically extend the range of possible transforms on biphotonic qutrits; the
three level quantum systems formed by the polarisation of two photons in the
same spatio-temporal mode. We fully characterise the biphoton-photon
entanglement that underpins our technique, thereby realising the first instance
of qubit-qutrit entanglement. We discuss an extension of our technique to
generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of
quantum information.Comment: 4 pages, 4 figure
The Distance to Nova V959 Mon from VLA Imaging
Determining reliable distances to classical novae is a challenging but
crucial step in deriving their ejected masses and explosion energetics. Here we
combine radio expansion measurements from the Karl G. Jansky Very Large Array
with velocities derived from optical spectra to estimate an expansion parallax
for nova V959 Mon, the first nova discovered through its gamma-ray emission. We
spatially resolve the nova at frequencies of 4.5-36.5 GHz in nine different
imaging epochs. The first five epochs cover the expansion of the ejecta from
2012 October to 2013 January, while the final four epochs span 2014 February to
2014 May. These observations correspond to days 126 through 199 and days 615
through 703 after the first detection of the nova. The images clearly show a
non-spherical ejecta geometry. Utilizing ejecta velocities derived from 3D
modelling of optical spectroscopy, the radio expansion implies a distance
between 0.9 +/- 0.2 and 2.2 +/- 0.4 kpc, with a most probable distance of 1.4
+/- 0.4 kpc. This distance implies a gamma-ray luminosity much less than the
prototype gamma-ray-detected nova, V407 Cyg, possibly due to the lack of a red
giant companion in the V959 Mon system. V959 Mon also has a much lower
gamma-ray luminosity than other classical novae detected in gamma-rays to date,
indicating a range of at least a factor of 10 in the gamma-ray luminosities for
these explosions.Comment: 11 pages, 8 figures, 3 tables, submitted to ApJ 2015-01-21, under
revie
- …