7,940 research outputs found

    The near-synchronous polar V1432 Aql (RX J1940.1-1025): Accretion geometry and synchronization time scale

    Full text link
    The magnetic Cataclysmic Variable (mCV) V1432 Aql (RX 1940.1-1025) belongs to the four-member subclass of near-synchronous polars with a slight non-synchronism (<2 %) between the spin period of the white dwarf and the binary period. In these systems the accretion geometry changes periodically with phase of the beat cycle. We present the application of a dipole accretion model for near-synchronous systems developed by Geckeler & Staubert (1997a) to extended optical and X-ray data. We detect a significant secular change of the white dwarf spin period in V1432 Aql of dP_spin/dt = -5.4 (+3.7/-3.2) 10-9 s/s from the optical data set alone. This corresponds to a synchronization time scale tau_sync = 199 (+441/-75) yr, comparable to the time scale of 170 yr for V1500 Cyg. The synchronization time scale in V1432 Aql is in excellent agreement with the theoretical prediction from the dominating magnetic torque in near-synchronous systems. We also present period analyses of optical CCD photometry and RXTE X-ray data, which argue against the existence of a 4000 s period and an interpretation of V1432 Aql as an intermediate polar. The dipole accretion model also allows to constrain the relevant parameters of the accretion geometry in this system: the optical data allow an estimate of the dimensionless parameter (R_t0'/R_wd)1/2 sin(beta) = 3.6 (+2.7/-1.1), with a lower limit for the threading radius of R_t0' > 10 R_wd (68% confidence).Comment: 12 pages, 10 figures, 6 tables accepted by A&

    Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs low-yield pathways

    Get PDF
    Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitrogen oxide (NO) or hydroperoxy radical (HO2) to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to formation of SOA, with a total production nearly equal that of toluene and xylene combined. In total, while only 39% percent of the aromatic species react via the low-NOx pathway, 72% of the aromatic SOA is formed via this mechanism. Predicted SOA concentrations from aromatics in the Eastern United States and Eastern Europe are actually largest during the summer, when the [NO]/[HO2] ratio is lower. Global production of SOA from aromatic sources is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Compared to recent observations, it would appear there are additional pathways beyond those accounted for here for production of anthropogenic SOA. However, owing to differences in spatial distributions of sources and seasons of peak production, there are still regions in which aromatic SOA produced via the mechanisms identified here are predicted to contribute substantially to, and even dominate, the local SOA concentrations, such as outflow regions from North America and South East Asia during the wintertime, though total SOA concentrations there are small (~0.1 μg/m^³)

    A graphene transmon operating at 1 T

    Full text link
    A superconducting transmon qubit resilient to strong magnetic fields is an important component for proposed topological and hybrid quantum computing (QC) schemes. Transmon qubits consist of a Josephson junction (JJ) shunted by a large capacitance, coupled to a high quality factor superconducting resonator. In conventional transmon devices, the JJ is made from an Al/AlOx_x/Al tunnel junction which ceases operation above the critical magnetic field of Al, 10 mT. Alternative junction technologies are therefore required to push the operation of these qubits into strong magnetic fields. Graphene JJs are one such candidate due to their high quality, ballistic transport and electrically tunable critical current densities. Importantly the monolayer structure of graphene protects the JJ from orbital interference effects that would otherwise inhibit operation at high magnetic field. Here we report the integration of ballistic graphene JJs into microwave frequency superconducting circuits to create the first graphene transmons. The electric tunability allows the characteristic band dispersion of graphene to be resolved via dispersive microwave spectroscopy. We demonstrate that the device is insensitive to the applied field and perform energy level spectroscopy of the transmon at 1 T, more than an order of magnitude higher than previous studies.Comment: attached supplementary materia

    Incorporating interactive 3-dimensional graphics in astronomy research papers

    Full text link
    Most research data collections created or used by astronomers are intrinsically multi-dimensional. In contrast, all visual representations of data presented within research papers are exclusively 2-dimensional. We present a resolution of this dichotomy that uses a novel technique for embedding 3-dimensional (3-d) visualisations of astronomy data sets in electronic-format research papers. Our technique uses the latest Adobe Portable Document Format extensions together with a new version of the S2PLOT programming library. The 3-d models can be easily rotated and explored by the reader and, in some cases, modified. We demonstrate example applications of this technique including: 3-d figures exhibiting subtle structure in redshift catalogues, colour-magnitude diagrams and halo merger trees; 3-d isosurface and volume renderings of cosmological simulations; and 3-d models of instructional diagrams and instrument designs.Comment: 18 pages, 7 figures, submitted to New Astronomy. For paper with 3-dimensional embedded figures, see http://astronomy.swin.edu.au/s2plot/3dpd

    Direct photons measured by the PHENIX experiment at RHIC

    Get PDF
    Results from the PHENIX experiment at RHIC on direct photon production in p+p, d+Au, and Au+Au collisions at sqrt(s_NN) = 200 GeV are presented. In p+p collisions, direct photon production at high p_T behaves as expected from perturbative QCD calculations. The p+p measurement serves as a baseline for direct photon production in Au+Au collisions. In d+Au collisions, no effects of cold nuclear matter are found within the large uncertainty of the measurement. In Au+Au collisions, the production of high p_T direct photons scales as expected for particle production in hard scatterings. This supports jet quenching models, which attribute the suppression of high p_T hadrons to the energy loss of fast partons in the medium produced in the collision. Low p_T direct photons, measured via e+e- pairs with small invariant mass, are possibly related to the production of thermal direct photons.Comment: 5 pages, 5 figures, Proceedings of the Hot Quarks 2006 Workshop for young scientists on the physics of ultra-relativistic nucleus-nucleus collisions, Villasimius, Sardinia, Italy, May 15--20, 200

    Exclusive Photoproduction of Large Momentum-Transfer K and K* Mesons

    Full text link
    The reactions gamma p -> K+ Lambda and gamma p -> K* Lambda are analyzed within perturbative QCD, allowing for diquarks as quasi-elementary constituents of baryons. The diquark-model parameters and the quark-diquark distribution amplitudes of proton and Lambda are taken from previous investigations of electromagnetic baryon form factors and Compton-scattering off protons. Unpolarized differential cross sections and polarization observables are computed for different choices of the K and K* distribution amplitudes. The asymptotic form of the K distribution amplitude (proportional to x1 x2) is found to provide a satisfactory description of the K photoproduction data.Comment: 32 pages, 7 figures available as tared, compressed and uuencoded PS-file

    Regulation of human cortical interneuron development by the chromatin remodeling protein CHD2

    Get PDF
    Mutations in the chromodomain helicase DNA binding protein 2 (CHD2) gene are associated with neurodevelopmental disorders. However, mechanisms by which CHD2 regulates human brain development remain largely uncharacterized. Here, we used a human embryonic stem cell model of cortical interneuron (hcIN) development to elucidate its roles in this process. We identified genome-wide CHD2 binding profiles during hcIN differentiation, defining direct CHD2 targets related to neurogenesis in hcIN progenitors and to neuronal function in hcINs. CHD2 bound sites were frequently coenriched with histone H3 lysine 27 acetylation (H3K27ac) and associated with high gene expression, indicating roles for CHD2 in promoting gene expression during hcIN development. Binding sites for different classes of transcription factors were enriched at CHD2 bound regions during differentiation, suggesting transcription factors that may cooperatively regulate stage-specific gene expression with CHD2. We also demonstrated that CHD2 haploinsufficiency altered CHD2 and H3K27ac coenrichment on chromatin and expression of associated genes, decreasing acetylation and expression of cell cycle genes while increasing acetylation and expression of neuronal genes, to cause precocious differentiation. Together, these data describe CHD2 direct targets and mechanisms by which CHD2 prevents precocious hcIN differentiation, which are likely to be disrupted by pathogenic CHD2 mutation to cause neurodevelopmental disorders

    Surface critical behavior of bcc binary alloys

    Full text link
    The surface critical behavior of bcc binary alloys undergoing a continuous B2-A2 order-disorder transition is investigated in the mean-field (MF) approximation. Our main aim is to provide clear evidence for the fact that surfaces which break the two-sublattice symmetry generically display the critical behavior of the NORMAL transition, whereas symmetry-preserving surfaces exhibit ORDINARY surface critical behavior. To this end we analyze the lattice MF equations for both types of surfaces in terms of nonlinear symplectic maps and derive a Ginzburg-Landau model for the symmetry-breaking (100) surface. The crucial feature of the continuum model is the emergence of an EFFECTIVE ORDERING (``staggered'') SURFACE FIELD, which depends on temperature and the other lattice model parameters, and which explains the appearance of NORMAL critical behavior for symmetry-breaking surfaces.Comment: 16 pages, REVTeX 3.0, 13 EPSF figures, submitted to Phys. Rev.

    Glueball production in radiative J/psi, Upsilon decays

    Get PDF
    Using a bound-state model of weakly bound gluons for glueballs made of two gluons and a natural generalization of the perturbative QCD formalism for exclusive hadronic processes, we present results for glueball production in radiative J/psi, Upsilon decays into several possible glueball states, including L \not= 0 ones. We perform a detailed phenomenological analysis, presenting results for the more favored experimental candidates and for decay angular distributions.Comment: RevTeX4, 26 pages, 11 eps figure
    corecore