6,858 research outputs found
Recommended from our members
Cryptoendolith communities in Antarctic dry valley region sandstones: Potential analogues of Martian life-forms
We are studying cryptoendolith-bearing Antarctic sandstones, to determine if the microbes alter the elemental composition of the rocks. If there is an effect, then it might be a tracer for the presence of micro-organisms in martian surface materials
Dopamine receptors in a songbird brain.
Dopamine is a key neuromodulatory transmitter in the brain. It acts through dopamine receptors to affect changes in neural activity, gene expression, and behavior. In songbirds, dopamine is released into the striatal song nucleus Area X, and the levels depend on social contexts of undirected and directed singing. This differential release is associated with differential expression of activity-dependent genes, such as egr1 (avian zenk), which in mammalian brain are modulated by dopamine receptors. Here we cloned from zebra finch brain cDNAs of all avian dopamine receptors: the D1 (D1A, D1B, D1D) and D2 (D2, D3, D4) families. Comparative sequence analyses of predicted proteins revealed expected phylogenetic relationships, in which the D1 family exists as single exon and the D2 family exists as spliced exon genes. In both zebra finch and chicken, the D1A, D1B, and D2 receptors were highly expressed in the striatum, the D1D and D3 throughout the pallium and within the mesopallium, respectively, and the D4 mainly in the cerebellum. Furthermore, within the zebra finch, all receptors, except for D4, showed differential expression in song nuclei relative to the surrounding regions and developmentally regulated expression that decreased for most receptors during the sensory acquisition and sensorimotor phases of song learning. Within Area X, half of the cells expressed both D1A and D2 receptors, and a higher proportion of the D1A-only-containing neurons expressed egr1 during undirected but not during directed singing. Our findings are consistent with hypotheses that dopamine receptors may be involved in song development and social context-dependent behaviors
The Stripe 82 1-2 GHz Very Large Array Snapshot Survey: Multiwavelength Counterparts
We have combined spectrosopic and photometric data from the Sloan Digital Sky
Survey (SDSS) with GHz radio observations, conducted as part of the
Stripe 82 GHz Snapshot Survey using the Karl G. Jansky Very Large Array
(VLA), which covers sq degrees, to a flux limit of 88 Jy rms.
Cross-matching the radio source components with optical data via
visual inspection results in a final sample of cross-matched objects,
of which have spectroscopic redshifts and objects have
photometric redshifts. Three previously undiscovered Giant Radio Galaxies
(GRGs) were found during the cross-matching process, which would have been
missed using automated techniques. For the objects with spectroscopy we
separate radio-loud Active Galactic Nuclei (AGN) and star-forming galaxies
(SFGs) using three diagnostics and then further divide our radio-loud AGN into
the HERG and LERG populations. A control matched sample of HERGs and LERGs,
matched on stellar mass, redshift and radio luminosity, reveals that the host
galaxies of LERGs are redder and more concentrated than HERGs. By combining
with near-infrared data, we demonstrate that LERGs also follow a tight
relationship. These results imply the LERG population are hosted by population
of massive, passively evolving early-type galaxies. We go on to show that
HERGs, LERGs, QSOs and star-forming galaxies in our sample all reside in
different regions of a WISE colour-colour diagram. This cross-matched sample
bridges the gap between previous `wide but shallow' and `deep but narrow'
samples and will be useful for a number of future investigations.Comment: 17 pages, 19 figures. Resubmitted to MNRAS after the initial comment
TRIAD - Preliminary design of an operational earth resources survey system. 1969 summer faculty fellowship program in engineering systems design
TRIAD, preliminary design of operational earth resources survey syste
TRIAD - Preliminary design of an operational earth resources survey system Final report
Design of operational earth resources survey syste
Characterization of Hypertension Risk Factors at the Committee on Temporary Shelter
Introduction: The health of homeless populations is at risk due to a high prevalence of undiagnosed hypertension (HTN) and cardiovascular disease (CVD). The interaction of housing and socioeconomic status with the risk factors for HTN and CVD remains unclear. Prevention of HTN through a healthy diet, exercise, adequate sleep, and avoidance of tobacco has been well described, but financial limitations and competing priorities for shelter and food make blood pressure (BP) control difficult for this population. By characterizing the risk factors and awareness of hypertension within the homeless population at the Committee on Temporary Shelter Daystation (COTS) in Burlington, Vermont, we may be able to identify promising avenues for therapeutic intervention.https://scholarworks.uvm.edu/comphp_gallery/1226/thumbnail.jp
A kinematical approach to gravitational lensing using new formulae for refractive index and acceleration
This paper uses the Schwarzschild metric to derive an effective refractive
index and acceleration vector that account for relativistic deflection of light
rays, in an otherwise classical kinematic framework. The new refractive index
and the known path equation are integrated to give accurate results for travel
time and deflection angle, respectively. A new formula for coordinate
acceleration is derived which describes the path of a massless test particle in
the vicinity of a spherically symmetric mass density distribution. A standard
ray-shooting technique is used to compare the deflection angle and time delay
predicted by this new formula with the previously calculated values, and with
standard first order approximations. Finally, the ray shooting method is used
in theoretical examples of strong and weak lensing, reproducing known
observer-plane caustic patterns for multiple masses.Comment: 11 pages, 7 figures, MNRAS accepte
Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing
We present the theoretical and analytical bases of optimal techniques to
measure weak gravitational shear from images of galaxies. We first characterize
the geometric space of shears and ellipticity, then use this geometric
interpretation to analyse images. The steps of this analysis include:
measurement of object shapes on images, combining measurements of a given
galaxy on different images, estimating the underlying shear from an ensemble of
galaxy shapes, and compensating for the systematic effects of image distortion,
bias from PSF asymmetries, and `"dilution" of the signal by the seeing. These
methods minimize the ellipticity measurement noise, provide calculable shear
uncertainty estimates, and allow removal of systematic contamination by PSF
effects to arbitrary precision. Galaxy images and PSFs are decomposed into a
family of orthogonal 2d Gaussian-based functions, making the PSF correction and
shape measurement relatively straightforward and computationally efficient. We
also discuss sources of noise-induced bias in weak lensing measurements and
provide a solution for these and previously identified biases.Comment: Version accepted to AJ. Minor fixes, plus a simpler method of shape
weighting. Version with full vector figures available via
http://www.astro.lsa.umich.edu/users/garyb/PUBLICATIONS
Weak gravitational lensing with the Square Kilometre Array
We investigate the capabilities of various stages of the SKA to perform
world-leading weak gravitational lensing surveys. We outline a way forward to
develop the tools needed for pursuing weak lensing in the radio band. We
identify the key analysis challenges and the key pathfinder experiments that
will allow us to address them in the run up to the SKA. We identify and
summarize the unique and potentially very powerful aspects of radio weak
lensing surveys, facilitated by the SKA, that can solve major challenges in the
field of weak lensing. These include the use of polarization and rotational
velocity information to control intrinsic alignments, and the new area of weak
lensing using intensity mapping experiments. We show how the SKA lensing
surveys will both complement and enhance corresponding efforts in the optical
wavebands through cross-correlation techniques and by way of extending the
reach of weak lensing to high redshift.Comment: 19 pages, 6 figures. Cosmology Chapter, Advancing Astrophysics with
the SKA (AASKA14) Conference, Giardini Naxos (Italy), June 9th-13th 201
Cosmology with Weak Lensing Surveys
Weak gravitational lensing surveys measure the distortion of the image of
distant sources due to the deflections of light rays by the fluctuations of the
gravitational potential along the line of sight. Since they probe the
non-linear matter power spectrum itself at medium redshift such surveys are
complimentary to both galaxy surveys (which follow stellar light) and cosmic
microwave background observations (which probe the linear regime at high
redshift). Ongoing CMB experiments such as WMAP and the future Planck satellite
mission will measure the standard cosmological parameters with unprecedented
accuracy. The focus of attention will then shift to understanding the nature of
dark matter and vacuum energy: several recent studies suggest that lensing is
the best method for constraining the dark energy equation of state. During the
next 5 year period ongoing and future weak lensing surveys such as the Joint
Dark Energy Mission (JDEM, e.g. SNAP) or the Large-aperture Synoptic Survey
Telescope (LSST) will play a major role in advancing our understanding of the
universe in this direction. In this review article we describe various aspects
of weak lensing surveys and how they can help us in understanding our universe.Comment: 15 pages, review article to appear in 2005 Triennial Issue of Phil.
Trans.
- …